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Resumo 

 

As doenças dos neurónios motores (DNMs) caracterizam-se pela deterioração 

progressiva dos neurónios motores (NMs). Os NMs são um tipo específico de 

neurónios implicado na comunicação do sistema nervoso central com os músculos e 

outros sistemas periféricos, como glândulas e órgãos, controlando movimentos 

voluntários e involuntários. As DNM abrangem um espectro de condições 

degenerativas dos NMs, associadas a inúmeras alterações genéticas. A esclerose 

lateral amiotrófica (ELA) e a atrofia muscular espinhal proximal (AME) são os tipos de 

DNM mais frequentes, atraindo assim os maiores esforços de investigação. A ELA é 

uma doença neurodegenerativa predominantemente esporádica de adultos, 

enquanto a AME é uma condição hereditária que se manifesta durante os primeiros 

anos de vida. As últimas pesquisas indicam que a incidência média da ELA nos 

países europeus está entre 2,1 e 3,8 por 100.000 pessoas anualmente, enquanto 

que a incidência de AME é de 1 em 5,000 a 10,000 nados-vivos. 

 

A degeneração dos NMs leva aos primeiros sintomas associados a fraqueza 

muscular indolor. A fraqueza muscular inicial nos membros estende-se de maneira 

contígua a outros grupos musculares. Os deficits funcionais progressivos levam a 

uma perda geral de independência. Nos últimos estádios da doença, a degeneração 

leva a uma incapacidade fatal para respirar e deglutir. Aproximadamente 50% das 

pessoas com ELA não sobrevivem mais de 3 anos após os primeiros sintomas e 

apenas cerca de 10% vivem 10 anos ou mais. 

 

As causas predominantes da ELA hereditária incluem uma expansão 

hexanucleotídica do gene C9orf72 e mutações missense nos genes SOD1, TARDBP 

e FUS. Por outro lado, a AME é desencadeada por mutações que afetam a 

expressão da proteína SMN em aproximadamente 95% dos casos (5q-SMA). No 

entanto, genes adicionais também foram associados a fenótipos não 5q-SMA. É 

notável que os genes predominantes em DNMs estão frequentemente envolvidos em 

funções como metabolismo do RNA, tráfego de vesículas, em particular transporte 

axonal, mecanismos de degradação de proteínas, metabolismo das mitocôndrias e 

vias de reparação do DNA. A semelhança observada entre os subtipos de DNMs 
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sugere que a degeneração seletiva de NMs é desencadeada por mecanismos 

moleculares comuns. Também é notável que, embora as DNMs se manifestem 

predominantemente em NMs, uma grande fração dos genes causais seja expressa 

de forma ubíqua num grande número de tecidos e esteja envolvida em funções 

básicas para a homeostasia celular. 

 

Embora a comunidade biomédica tenha amplo conhecimento dos genes 

envolvidos nas DNMs, ainda não conhecemos os eventos fundamentais que 

desencadeiam a degeneração do NM. A principal razão é que os sistemas biológicos 

são complexos, ou seja, compostos por um número muito elevado de elementos 

intimamente interrelacionados. A complexidade dos sistemas celulares dificulta assim 

a identificação das consequências das alterações genéticas, que podem 

desencadear respostas variáveis dependendo do contexto celular e genético. Esta 

limitação é critica, sendo que a falta de uma definição detalhada da patogénese das 

DNMs impossibilita o desenvolvimento de ferramentas para o diagnóstico precoce e 

opções terapêuticas efetivas. 

 

A biologia de sistemas visa abordar os desafios biomédicos, capturando, em 

vez de reduzir, a complexidade do sistema biológico de interesse. Por outras 

palavras, a biologia de sistemas pretende estudar o modo como a relação entre os 

elementos de um sistema complexo resulta nos fenómenos biológicos observados 

na natureza. É assim que o primeiro passo para desenvolver estratégias de 

investigação biomédica na perspetiva da biologia de sistemas é a construção de 

modelos biológicos detalhados. Para esse fim, as abordagens bioquímicas de alto 

rendimento, ou abordagens “ómicas” tem sido fundamentais para gerar bancos de 

dados de larga escala de livre acesso. Entre estes dados temos os que descrevem 

as interações físicas entre as proteínas (interatoma), fundamentais para coordenar os 

processos biológicos. Igualmente, a caracterização dos transcritomas específicos de 

células e tecidos é critica para restringir os estudos aos genes expressos em cada 

contexto biológico. Os catálogos públicos de funções e associações a doenças são 

de grande utilidade para caracterizar e prioritizar os transcritos e proteínas 

identificados em investigações experimentais ou computacionais.  
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O estudo de dados “ómicos” requer métodos analíticos especializados. Por 

exemplo, a representação de interações biomoleculares em redes facilita a 

integração de dados complexos e a aplicação de conceitos da teoria de redes para 

prever fenómenos biológicos. Nomeadamente, a topologia das redes biológicas 

descreve o arranjo das biomoléculas que interagem na rede e fornece informações 

valiosas para interpretar as propriedades biológicas do sistema, tanto no seu 

conjunto, como dos elementos que o compõem. Por exemplo, a importância de uma 

molécula para a atividade de um determinado sistema pode ser inferida a partir do 

número e tipo de interações que tem em seu redor na rede. Da mesma forma, a 

caracterização de perturbações hipotéticas na rede biológica permite-nos antecipar 

resultados patológicos. 

 

 

Neste contexto, o trabalho desenvolvido neste doutoramento teve como 

principal objetivo aplicar abordagens computacionais a partir da perspectiva da 

biologia de sistemas para propor mecanismos transversais explicativos da 

degeneração de NMs. Em particular, propusemos responder a duas perguntas: 1) 

como é que o fenótipo comum dos subtipos de DNM surgem da alteração de vias 

distintas?;  2) Como é que a alteração de proteínas ubiquamente expressas pode 

afetar apenas a um tipo celular como os NMs?  

Com base nestes objetivos, desenvolvemos dois métodos baseados em redes 

de interação proteína-proteína (IPP).  

 

O primeiro método, chamado BioInt-U, foi desenhado para caracterizar 

funcionalmente os interactomas específicos de tecido no contexto normal e de 

doença. O método identifica unidades de Interação Biológica, definidas como grupos 

de proteínas que interatuam fisicamente e partilham uma anotação funcional 

biológica (Ontologia). O método foi aplicado em 33 tecidos humanos para identificar 

os catálogos de funções associadas a cada tecido. Seguidamente, as bibliotecas de 

funções permitiram identificar propriedades topológicas diferenciais entre as 

proteínas expressas ubiquamente, daquelas proteínas especificamente expressas em 

poucos tecidos. Os resultados mostraram que as proteínas ubíquas podem 

colaborar em processos biológicos básicos para a sobrevivência de qualquer célula, 
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mas também em funciones especificas de tecido. Finamente, o mapeamento de 

genes associados a doenças especificas de tecido revelou que as funções que 

acumulam mais mutações associadas a doença têm maior centralidade nas 

respetivas redes especificas de tecido. 

 

O segundo método, chamado Specific-Specific Betweenness (S2B), foi 

desenhado para identificar, em redes de interação proteica, proteínas centrais 

capazes de conetar especificamente qualquer par de conjuntos de genes associados 

a doenças semelhantes. A qualidade das previsões do método S2B foi avaliada com 

redes randomizadas e módulos artificiais de doença, desenhados com base nos 

conceitos mais recentes da medicina de redes. O S2B foi aplicado para prioritizar os 

candidatos que conetam as proteínas associadas à ELA com as proteínas 

associadas à AME em redes neuronais humanas e de Drosophila. Observamos que 

muitos candidatos estão envolvidos em funções previamente associadas a DNMs e 

também a outras doenças neurológicas.  

 

Paralelamente, o nosso laboratório, em colaboração com parceiros 

internacionais envolvidos no projeto Fly-SMALS (EU-JPND), caracterizou a 

desregulação transcricional de modelos genéticos de ELA e AME na mosca-da-fruta. 

Os modelos 'knockdown' consistiram na redução de expressão, por via de RNA de 

interferência, dos genes ortólogos de TARDBP, FUS e SMN1. Os analises de 

sequenciação de RNA (RNA-Seq) revelaram que a inibição da expressão dos genes 

causais de ELA e AME altera a abundância de um grande grupo de genes em 

comum, mas também de genes específicos de cada modelo. Para além disso, 

observámos que os transcritos desregulados se encontram associados a processos 

biológicos muito variados. O mapeamento dos candidatos identificados na mosca-

da-fruta em bibliotecas funcionais obtidas com o método BioInt permitiu encontrar 

processos biológicos enriquecidos em genes regulados pelos genes causais de ELA 

e AME. Mais uma vez, os resultados obtidos revelaram que as funções que 

acumulam a fração mais elevada de candidatos se encontram estreitamente 

envolvidas na fisiologia dos NMs. 
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A investigação conclui-se com a combinação dos resultados obtidos em cada 

estudo para gerar uma visão comum dos mecanismos de DNMs. O uso de 

bibliotecas funcionais definidas pelo método BioInt permitiu a integração dos 

candidatos gerados em modelos humanos e de mosca-da-fruta. Os resultados 

indicaram que as proteínas candidatas em mosca-da-fruta e humano tem marcas 

biológicas particulares a seu contexto biológico. Além destas diferenças, a 

combinação dos resultados permitiu prioritizar funções comuns associadas aos 

diferentes modelos de DNM em humano e mosca-da-fruta e que são afetadas por 

diferentes redes proteicas.  

 

O presente estudo fornece uma base para continuar a investigar os 

mecanismos complexos das DNMs em redes de IPP. Como estas, muitas outras 

doenças têm etiologia complexa e, portanto, consideramos que as estratégias aqui 

apresentadas também podem ser aplicadas à investigação dos mecanismos 

biológicos subjacentes a estes contextos. 

 

Palavras-chave 
Doenças do neurónio motor; genes associados a doença; função biológica; 

redes de interação proteína-proteína; topologia  

  



 

2022 XI I I  

Abstract 
Motor neuron diseases (MND) encompass a spectrum of motor neuron (MN) 

degenerative conditions associated to numerous genetic alterations, the most 

common of which are ALS and SMA-5q. Despite years of research, the molecular 

mechanisms underlying MN degeneration remain unclear. The present work aimed to 

contribute to answer two outstanding questions: 1) how do MND phenotypes arise 

from changes in distinct cellular pathways; and 2) how can the alteration of 

ubiquitously expressed proteins generate MN-specific diseases. We made use of 

network biology principles to investigate the tissue-specific interactomic context of 

MND genes and elucidate transversal characteristics shared by distinct MNDs. Two 

novel network-based methods were developed to characterize the functional 

landscape of tissue-specific interactomes (BioInt-U); and to identify bottleneck 

proteins connecting pairs of diseases with similar phenotypes (S2B). The application 

of the BioInt-U method to human PPI networks revealed tissue-specific functional 

specialization of ubiquitous proteins, with effective prediction of disease phenotypes.  

The S2B method was applied to prioritize candidates connecting ALS and SMA-

linked genes in human and Drosophila brain networks, revealing coherent functional 

roles. RNA-seq data from Drosophila models was used to identify neuronal genes 

that are directly and indirectly regulated by the fly orthologs of the ALS and SMA 

causal genes TARDBP, FUS and SMN1. This work revealed a phenotypic 

convergence onto common protein functional modules, albeit through independent 

targets. In conjugation with the BioInt method, it further provided insights into the 

origin of MN specific phenotypes. Finally, the candidate genes identified in human and 

Drosophila networks using S2B and Drosophila transcriptome data, complemented 

by a publicly available dataset from ALS patients, were subjected to an integrative 

analysis by mapping onto BioInt units. Taken together, the work presented here 

provides novel insights regarding the molecular mechanisms underlying MNDs, while 

developing computational methods that can be used to address other diseases. 

Keywords 
Biological process; disease gene; motor neuron diseases; protein-protein 

interaction network; topology  
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1.1  Motor Neuron Diseases 
 

Motor neuron diseases (MND) include a whole spectrum of disorders 

particularly affecting motor neurons (MN). Amyotrophic lateral sclerosis (ALS) and 

spinal muscular atrophy (SMA) are the most frequent MND types, thereby the ones 

amounting more research efforts. Despite the vast genetic knowledge collected 

throughout past decades, the pathological mechanisms leading to MN degeneration 

are still unclear. ALS is a predominantly sporadic, adult-onset neurodegenerative 

disease, while SMA is an inherited condition that manifests during the first years of 

life. The disease subtypes of both ALS and SMA present heterogeneous clinical 

features regarding age of onset, affected body region and disease progression. 

Likewise, MND patients also reveal diverse mutation profiles. Letting aside the 

distinctive signatures of the respective subtypes, the most predominant MND disease 

genes are involved in close molecular processes, suggesting that selective MN 

degeneration is triggered by common molecular pathomechanisms. 

 

The investigation conducted in this thesis has focused on applying network-

based strategies to provide novel hypothesis on the common mechanisms implicated 

in MN degeneration. Before we delve deeper into the network biology principles 

exploited in the research, this section will first overview the predominant clinical and 

genetic traits identified so far in ALS and SMA patients, which sustain the current 

hypotheses underlying MND pathomechanisms. 

 

1.1.1 Introductory remarks on MND 

Healthy neuromuscular system 
 

Motor neurons (MNs) are a specific type of neurons implicated in the 

communication of the central nervous system (CNS) with muscles and other 

peripheral systems, such as glands and organs, controlling both voluntary and 

involuntary movements. Two main types of MNs are recognized according to their 

anatomic location (Figure 1.1A). The cell body of upper MNs is located at the motor 

cortex and projects to the spinal cord, where they synapse with lower MNs. In turn, 
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lower MNs are located in the brain stem or spinal cord and project to effector organs 

and muscles. Visceral lower MNs located at the brain stem are particularly critical for 

sustaining vital processes since they innervate visceral glands and organs including 

tongue, esophagus, larynx, lungs, heart, stomach, and intestines. On the other hand, 

somatic lower MNs innervate skeletal muscle and so control muscle contraction 

overall. For an extended view, we refer to the sixth edition of Neuroscience book, 

Chapters 16 and 17 (Purves et al., 2018). 

 

The cell body of the MN has the typical morphology of a neuron but is 

distinguished by a remarkably long axonal projection. The MN axon usually branches 

to establish many synapses and innervate several muscle fibers. Somatic MNs 

establish a specialized synapse with muscle fibers, called the neuromuscular junction 

(NMJ) (Figure 1.1B). Vertebrate MNs are cholinergic, that is, employ acetylcholine as 

primary neurotransmitter. Postsynaptic acetylcholine receptors in muscle cells will 

activate sodium influx and trigger muscle contraction. Myelination of the MN axon is 

critical to efficiently transmit the action potential to the synapse. Oligodendrocytes 

and Schwann glial cells are responsible for axon myelination in the CNS and 

peripheral nervous system, respectively (Figure 1.1C). Likewise, astrocytes are a vital 

type of glial cells that not only provide metabolic and structural support for neurons, 

but also influence axonal projection and synaptic signaling. Furthermore, astrocytes 

are pivotal in regulating immune responses in the CNS. 

 

MND clinical presentation 
 

The clinical phenotype of MNDs encompasses a broad spectrum of 

symptoms. SMA primarily affects lower MNs while ALS affects both upper and lower 

MNs (Figure 1.1A). SMA is, in most cases, a childhood-onset disease, and infants 

usually present severe physical disability from the first years of life (Farrar and 

Kiernan, 2015). The age of onset of symptoms in SMA is directly related to the speed 

of disease progression and life expectancy (extended in next section).  

Disregarding the type of MN affected, 75% of ALS cases reveal a spinal onset, 

being the first symptoms associated with painless muscle weakness. The initial 

muscular weakness on limbs extends in a contiguous manner from distal to axial 
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muscles through cell to cell ‘domino-like’ propagation (Kanouchi et al., 2012). 

Patients experience an increasing fatigue and movement impairment. The progressive 

functional deficits lead to an overall loss of independence. ALS progression is usually 

rapid and linear. 

 

 
 
Figure 1.1 Schematic representation of the neuromuscular system and predominant targets of 
MND 
(A) Conceptualization of motor neuron (MN) circuitry and primary targets and onset of ALS and SMA. 
Depending on the genetic etiology and patient history, MND subtypes can affect various types of MNs 
(right). Each group of MNs guides a wide variety of both involuntary and voluntary movements. In turn, the 
degeneration of MNs is initially manifested in different organs or skeletal muscle groups (highlighted in 
green, blue and yellow, respectively). On this basis, MND types can be broadly classified based on primary 
onset (left). (B) Sketch of upper and lower MN synapse and muscle innervation in the neuromuscular 
junction (NMJ). (C) Sketch of most determinant non-MN neuron players in the physiological maintenance of 
MNs.  
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The median age of onset of ALS is between 51 and 66 years (Table 1.1) 

(Longinetti and Fang, 2019). The median survival time of ALS patients from 

symptom onset to death is between 1 and 2 years. Notwithstanding, 10–20% of 

patients survive more than ten years (Jankovska and Matej, 2021). The rest of ALS 

patients present with bulbar onset characterized by difficulty in speaking or 

swallowing (Figure 1.1A). Cognitive impairment is frequently associated with the 

bulbar onset cases. The frontotemporal dementia associated with ALS (ALS-FTD) has 

a significantly worse prognosis that spinal onset ALS (Jankovska and Matej, 2021). 

 

MND hereditary patterns and global incidence 
 

SMA incidence is 1 in 5,000-10,000 live births, with the most severe subtype 

(SMA I) accounting for around 45% of all cases (reviewed by (Mercuri et al., 2020; 

Verhaart et al., 2017) (Table 1.1). Although SMA is rare in the population, it is the 

second most frequent recessive disease following cystic fibrosis, and it is the most 

common genetic cause of infant mortality.  

 

 
Table 1.1 Classification criteria of motor neuron diseases (MND) 
SMA and ALS subtypes are classified based on genetic mutations and/or clinical features 

 
 

  

Type SMN1
SMN2 
copies Other Onset Lifespan Subtype Type

I 2 - < 6 months < 2 years 45%

II 3 - < 18 months > 25 years (80%) 20%

III 4 - > 18 months Normal 30%

IV 8 - > 30 years Normal <5%

Non SMA-5q - - - > 30 Variable Variable <5%

Familial - - - > 50 10%

Sporadic - - - Unknown 90%

Frequency

SMA-5q
SMA

ALS

Clinical features

Homozygous
mutation/deletion

of SMN1

MND-associated genes

1-2 years
> 10 years (15%)

50-60 years < 70%

< 30%

Subtype

Motor neuron diseases



Chapter 1: Introduction 

M.L. García-Vaquero, 2022 6 

SMA is in more than 95% of the cases caused by a homozygous 

deletion/mutation in the SMN1 gene located in chromosome 5q (Table 1.1). The 

SMN protein is encoded by SMN1 and SMN2 genes. While SMN1 is a conserved and 

essential gene, SMN2 has a silent substitution in exon 7 that impairs splicing and 

leads the predominant formation of a mRNA isoform without exon 7. This in turn 

leads to a ~70-80% decrease in the translation of full-length SMN protein. In healthy 

individuals, SMN1 transcription is sufficient to supply the necessary SMN protein. 

However, SMA-5q or SMN-related SMA patients lack normal SMN1 expression. Is 

at this moment that the translation of SMN protein by the SMN2 alleles becomes a 

decisive factor for SMA-5q patient survival. Humans can have a variable copy number 

of SMN2 genes (0-8). As a consequence, SMN2 copy number directly determines the 

symptom onset and prognosis, which is why it is associated to the four SMA-5q 

subtypes (Table 1.1) (reviewed in (Mercuri et al., 2020; Ojala et al., 2021). SMA I 

and II patients have 2 or 3 copies of SMN2 and are the most severe subtypes, 

accounting for >60% of total SMA population. These patients are diagnosed during 

the first months of life and in the most favorable cases, infants with SMA II can survive 

up to 25 years (Mercuri et al., 2020). SMA III patients have more than 3 SMN2 copies 

and are diagnosed during first years of life but can reach a normal lifespan. SMA IV is 

the less severe type, with patients diagnosed in their third decade of life. In contrast 

with SMA-5q, the etiology of SMA cases non-related to SMN1 shows a large genetic 

heterogeneity. As it will be extended in the following sections, SMA has been 

associated to mutations in more than 30 genes so far (Farrar and Kiernan, 2015). 

 

ALS by contrast is a complex multigenic disease that does not have an 

apparent hereditary cause in ~90% of the cases (Table 1.1) (Taylor et al., 2016). 

Latest surveys indicate that the average ALS incidence in European countries is 

between 2.1 and 3.8 per 100, 000 person annually (reviewed by (Longinetti and 

Fang, 2019). It is also noteworthy that men suffer from ALS at 1.5 times the rate of 

women (Jankovska and Matej, 2021). Few ALS environmental risk factors have been 

elucidated so far, including cigarette smoking, traumatic brain injury or intensive 

physical exercise among the most prominent ones. 
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Histopathological hallmarks 
 

ALS is the most common form of MND and accounts for about 70% of the 

cases, out of which 90% are of sporadic etiology. Thus, a large fraction of ALS cases 

can only be diagnosed when the first symptoms arise. Patients present atrophy in 

muscle fibers caused by selective degeneration of the MNs involved in muscle 

innervation. Upon autopsy, the nervous system evinces cell loss in the motor cortex, 

brainstem and anterior horns of the spinal cord. MN and glial cells reveal a significant 

accumulation of cytoplasmic inclusions, primarily formed of aggregates containing 

ubiquitinated TDP-43 protein (Arai et al., 2006). An abnormal accumulation of 

phosphorylated neurofilaments, mitochondria and lysosomes in the proximal axon of 

large MNs is also frequently found (reviewed in (Ragagnin et al., 2019)). Numerous 

studies also indicate a loss in myelinated axons and neuroinflammation processes 

(Komine and Yamanaka, 2015). Several transgenic models indicate that axonal 

demyelination and degeneration phenotype occurs prior to MN cell body death 

(Dadon-Nachum et al., 2011). In parallel, degenerative MNs in the spinal cord and 

motor cortex are frequently surrounded by reactive astrocytes, which concomitantly 

exhibit intracellular inclusion bodies. However, it is not clear yet whether the activation 

of astrocytes is a cause or consequence of MN impairment. Subcellular aberrations 

and organelle abnormalities are frequently found in degenerating MN. Nonetheless, 

these features are not exclusive to MN death but are commonly found in any 

degenerating cell. Thus, these hallmarks can be the result of the latest disease stage, 

once the MN degeneration is irreversible. While it is true that histopathological 

hallmarks can bring relevant clues, these observations are not sufficient to evince the 

etiological events causing MN degeneration.  

 

1.1.2  Functional genetics of MND 

 

Although most ALS patients present a sporadic manifestation (sALS), around 

10% of patients reveal a traceable hereditary history. The clinical symptoms of sALS 

and familiar ALS (fALS) are largely indistinguishable, facilitating research into the 

molecular mechanisms triggering MN degeneration. Even though the biomedical 
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study of fALS has produced relevant insights into the molecular hallmarks associated 

with ALS, the ultimate cellular events responsible for MN degeneration remain 

unclear.  

 

To date, more than 35 genes have been directly linked to ALS (Figure 1.2A). 

Most of these genetic alterations are missense substitutions. However, we find a 

notable exception in C9orf72 that, in pathological conditions, presents a 

hexanucleotide expansion that can reach several thousands of repeats. The 

population suffering from MNDs has not been completely characterized yet and the 

latest enquiries still return varying conclusions. ALS genetics reveals large differences 

in European/North American and Asian/Middle East populations (Mejzini et al., 2019). 

Approximately however, the predominant ALS genetic causes include the 

hexanucleotide expansion of C9orf72 and missense mutations in SOD1, TARDBP 

and FUS genes, representing ~25%, 20%, 5%, <5% of total cases in fALS, and 

~10%, 2%, 1% and 1% in sALS, respectively (Figure 1.2C, (Taylor et al., 2016)). It 

also is noteworthy that expansion in C9orf72 is particularly related with ALS-FTD 

spectrum (C9FTD/ALS) in Europe and North America (Balendra and Isaacs, 2018). In 

contrast, SMA is in approximately 95% of the cases triggered by mutations affecting 

to the expression of the SMN protein. Nonetheless, additional genes have been linked 

to non 5q-SMA phenotypes (hereinafter referred to as 'SMAs'). Several research 

groups, including ours have recently revisited the molecular implications of the most 

frequent MN disease genes (DGs) (Farrar and Kiernan, 2015; Gama-Carvalho et al., 

2017; Mathis et al., 2019; Nguyen et al., 2018; Ojala et al., 2021; Taylor et al., 

2016). Figure 1.2 summarizes the most consistent MND genetic findings discussed 

in the abovementioned reviews. The following subsections will cover the most 

promising pathomechanisms.  
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Figure 1.2 Summary of prominent MND disease genes (DGs) 
(A) Timeline of MND genetic discoveries discussed in recent reviews (dashed box). Dot color indicates the 
best-studied roles of the DGs as summarized in panel B. Large dot and bold label points to most frequent 
DGs in ALS and SMA as illustrated in panel C. (B) Pie charts summarizing the functional roles of DGs. (C) 
Pie charts summarizing most frequent DGs in ALS and SMA patient groups. 
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Current molecular hypothesis for MND 
 

Gene mutations can have a wide-ranging impact on gene expression patterns, 

transcript stability, and protein folding that directly modulate the gene product activity. 

We can distinguish two broad types of mutations; Loss-Of-Function (LOF) 

mutations inactivate the gene activity and Gain-Of-Function (GOF) mutations 

provide increased wild type functionality or new molecular capabilities. The acquisition 

of novel functions can be a result from the expression in new tissues, localization in 

different sub cellular localizations or by the establishment of new interactions (Li et al., 

2019). The GOF mutations can in turn become deleterious when generate toxic 

protein aggregates or impair biological processes. Additionally, mutations affecting 

the protein localization can be regarded simultaneously as LOF and GOF depending 

on the cellular compartment that we consider. 

 

The over-stabilization of aberrant protein complexes can trigger cellular stress 

and degenerate into the aggregation of larger protein-RNA assemblies (Aulas et al., 

2017; Blokhuis et al., 2013). Protein inclusions can be made up of different proteins 

and thus can have unpredictable consequences for the cell homeostasis. Protein 

aggregates are thought to induce cytotoxicity by i) blocking the functions of proteins 

immobilized in the aggregate, ii) overloading protein degradation systems, and iii) 

disrupting cell membranes and their associated pathways (Iuchi et al., 2021). These 

events increase oxidative stress, leading to the activation of apoptosis or necrotic 

pathways. 

 

The toxicity of protein aggregates identified in samples from MND patients is at 

open debate, as the protein inclusions have shown neutral, toxic or even 

protective roles in different MND models (detailed discussion in (Hergesheimer et 

al., 2019; McAlary et al., 2020)).  We find instances of both LOF and GOF mutations 

in fALS-causing genes (G. Kim et al., 2020; Taylor et al., 2016) what once again 

hinders the identification of transversal disease mechanisms. Regardless to the 

LOF/GOF mechanisms of the most frequent ALS and SMA-linked mutations in the 

population, the predominant roles of MN DGs are, according to the overview in 

Figure 1.2B; (i) RNA metabolism, (ii) vesicle trafficking and in particular axonal 
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transport, (iii) protein degradation, (iv) mitochondria metabolism and (v) DNA damage 

control. The main goal of this research is to use network-based models that integrate 

the available molecular information to identify the most determinant players in MND. 

On this basis, here we will only draw a conceptual briefing of key molecular MND 

hypotheses and refer to up-to-date reviews for extended discussion (Figure 1.3). 
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Figure 1.3 Schematic overview of the most consistent MND pathomechanisms 
(i) Disturbance of RNA regulation is among the most recurrent MND hallmark. Numerous ALS DGs are 
RNA-binding proteins (RBPs) implicated in RNA biogenesis and regulation of RNA lifetime and location in 
the cell. RBPs display numerous PPIs with varying proteins and constitute physical and functional bridges 
to coordinate biological processes. (ii) Vesicle traffic lies at the center of cell activity being that coordinates 
the localization of macromolecules to the cell regions where they are required. Vesicle traffic is coordinated 
by numerous elements but could be broadly divided in scaffold elements made by proteins of the 
cytoskeleton, and signaling pathways that regulate the cytoskeleton polymerization and movement of 
motor proteins. (ii-1) MNs have additional functional requirements compared to other cell types. 
Anterograde vesicle transport is even more critical in MNs given their particular morphology and functional 
activity. MN axonal projections are particularly long and so MNs require the mobilization of large pools of 
protein and RNA molecules. Synaptic activity in turn requires of dynamic mRNA pools to produce the 
proteins necessary for the correct neurotransmitter (NT) release. (ii-2) Retrograde transport is equally 
essential to recycle and repair the elements deteriorated by normal activity. Vesicles, proteins and 
organelles are transported to MN soma through the same cytoskeleton scaffold but using distinct signaling 
pathways. The autophagosome is key for MN physiology as it recycles exhausted mitochondria. (iii) Protein 
degradation is coordinated by the proteasome and is critical to eliminate potentially harmful proteins and 
recycle amino acids. External stress and disturbances in protein folding can trigger exacerbated ER stress. 
At the same time, mutations in the regulators of the proteasome can similarly trigger the MN proteome 
deregulation. (iv) Energy metabolism is pivotal for any cell. Mitochondria are distributed around the cell to 
provide ATP to biochemical processes. The production of ATP is inherently related to oxidative stress thus, 
the cell has control mechanisms to balance reactive oxygen species (ROS). MNs are long living cells with 
additional energy requirements, which make them more sensitive to oxidative damage. (v) The normal 
oxidative stress and RNA biogenesis are main sources of DNA damage. However, the alteration of RBPs 
and energy metabolism in MNDs can notably increase DNA damage and MN genome instability. 

 

 

i) RNA metabolism 

RNA metabolism is tightly orchestrated by hundreds of RNA-binding proteins 

(RBPs) that regulate all the events of RNA biogenesis including transcription, post-

transcriptional modifications and translation control. RBPs further shape cellular RNA 

pools by regulating RNA stability, localization and degradation (mRNA transport 

regulation in synaptic plasticity reviewed by (Hutten et al., 2014).  

 

Most of the predominant mutations linked to MNDs are located in genes 

involved in RNA metabolism including SMN1, TDP-43 and FUS that suggest that 

RNA homeostasis deregulation has key implications in MN degeneration. TDP-43 

(codified by TARDBP) and FUS proteins are both RBPs mostly known as regulators 

of splicing, translation and mRNA stability. In contrast, SMN does not belong to the 

RBP/hnRNP family but collaborates as a chaperone to assemble the RNA-protein 

complexes necessary to coordinate diverse RNA pathways. The SMN complex best-

known function is the assembly of small nuclear ribonucleoproteins (snRNPs) that will 

become the building blocks of the spliceosome machinery. The spliceosome in turn, 
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is a highly dynamic and large macromolecular complex in charge of the catalysis of 

RNA splicing but also in the coordination of additional RNA processing steps as the 

just mentioned. The best-known function of C9orf72 is the regulation of Rab 

GTPases during autophagy (extended later). Thus, the repeat expansion can block 

C9orf72 protein through LOF mechanism and affect to vesicle trafficking. However, 

the most substantiated hypothesis indicates the toxicity of the hexanucleotide 

expansion is derived from the transcription of RNA foci that sequester RNAs and 

RBPs including TDP-43 itself (pathological mechanisms of C9orf72 reviewed by 

(Balendra and Isaacs, 2018). Less frequent MN DGs involved in RNA metabolism 

include the heterogeneous nuclear ribonucleoparticles hnRNP A1 and A2/B1, or the 

proteins Matrin 3 (MATR3), Ataxin2 (ATXN2), Angiogenin (ANG), Senataxin 

(SETX), or the transcription elongator ELP3 (RNA regulators implicated in MND 

reviewed by (Gama-Carvalho et al., 2017)) 

 

ii) Axonal transport 

Neurons have unique functions that require singular morphological 

adaptations. The main function of neurons is to receive, store and transmit 

information through complex neuron networks. In turn, the neuron transmits the 

information pulses through dynamic signaling pathways that require rapid protein 

expression mechanisms at the synapse. Thus, axonal transport of the elements 

necessary for protein translation - including RNA and ribosomal macromolecules 

among others - becomes essential for normal neuronal physiology (local translation in 

neurons is reviewed in (Rangaraju et al., 2017). Added to this, it must be noted that 

the synapse is typically distant from the neuron cell body. This is especially 

accentuated in the case of MNs, being that in humans the axon can reach a meter in 

length. For these reasons, the maintenance of the axonal delivery system is a 

particularly critical function for MN synaptic activity. In fact, as early as 1990 it was 

observed that the largest MNs are the first neurons to degenerate in ALS, 

corroborating that indeed the axonal length is a critical factor in MND. 

 

Axonal transport can be divided in three main processes: 1) the recruitment of 

the delivery cargo as macromolecules, vesicles or organelles; 2) the polymerization of 
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the cytoskeleton filaments; and 3) the regulation of cargo transport through the 

filaments. The cytoskeleton is a highly dynamic network of filamentous proteins that 

links all regions and components of the cell (reviewed in (Hohmann and Dehghani, 

2019). It maintains cellular organization by giving structural support and mediating 

communication across the entire cell. There are three major types of cytoskeleton 

filaments: microtubules, actin filaments, and intermediate filaments. The neuron axon 

is a distinctive cell extension from the neuronal body with a unique arrangement of 

cytoskeleton filaments (cytoskeleton organization in axon is reviewed in (Kevenaar 

and Hoogenraad, 2015). Neurofilaments are a special type of intermediate filaments 

that embeds microtubules and determine the radius of the axon and thereby axonal 

conductance. Both microtubule and microfilaments are constantly undergoing cycles 

of polymerization and depolymerization to rearrange cytoskeleton organization 

according to the axon requirements. Microfilaments (actin polymers) provide 

mechanical support and facilitate the transduction of extracellular mechanical signals 

that modulate axonogenesis and axon pruning. On the other hand, microtubules 

(tubulin polymers) coordinate long-distance transport of organelles and vesicles both 

in anterograde (towards synapse) and retrograde (towards neuron body) directions. 

Both the microtubules and microfilaments have specific motor proteins that “walk” 

along them. Myosins move along the microfilaments while dynein and kinesin in 

microtubules. While one end of the motor protein holds onto the cytoskeleton, the 

other end binds to the cargo. Motor proteins advance through the cytoskeleton by 

conformational changes derived from ATP hydrolysis. Microtubule anterograde 

transport is exerted by kinesins and is essential to deliver necessary cargos to the 

synapse. The retrograde transport is conducted by dynein motor-proteins to 

coordinate the recycling of organelles and macromolecules in the cell body. 

 

This is a simplistic vision of cytoskeleton dynamics, and it must be noted that 

these are complex processes orchestrated by highly dynamic signaling networks 

including Rab GTPases and Rab exchange factors (GEFs) proteins (Rab proteins 

role in ALS reviewed in (Burk and Pasterkamp, 2019). 
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ii-1) mRNA axonal transport 

The heavy use of axonal transport for synapse in situ protein translation, the 

extreme polarized morphology of MNs and the high prevalence of DG involved in RNA 

metabolism and vesicle trafficking strongly point to mRNA transport disturbance as 

major event for MN. The first step on mRNA transport to the synapse begins in the 

nucleus. TDP-43 and FUS are well known nucleo-cytoplasmic shuttling RBPs 

involved in mRNA nuclear export. Along the same line, MND-associated mutations in 

genes encoding nuclear envelope proteins Lamin (LMNB1, in ALS) and Prelamin 

(LMNA, in SMAs) also support the hypothesis that nuclear export is a central event 

on MN deregulation (nucleo-cytoplasmic traffic in MND is reviewed in (Fallini et al., 

2020). 

 

Once the RNA cargo is available in the cytoplasm, it must be loaded to the 

cytoskeleton system to be transported to its final destination. Cytoskeleton 

constituents as Tubulin (TUB4A), cytoskeleton regulators as GEF Rab GTPases 

(ALS2 and C9orf72) and motor proteins as Dynactin (DCTN1) are equally essential 

elements of vesicle trafficking with known association to MNDs (disrupted neuronal 

trafficking reviewed in (Burk and Pasterkamp, 2019). Additional observations indicate 

the impairment of regulators of microtubule (SPAST and REEP1, ALS and SMAs 

DGs, respectively) and microfilament (PFN1 and ANXA1) polymerization. Regulators 

of neurofilament networks as NEHF and PRPH have also been linked to ALS. 

Additional vesicle trafficking elements associated to ALS include VAPB that 

coordinate microtubule and vesicle membrane interaction; FIG4 that collaborates in 

phosphoinositide signaling pathway to regulate vesicle trafficking; and UNC13A, 

which is essential for synaptic vesicle maturation. It should be noted that the cargo is 

not only restricted to mRNA molecules, but neurons also require the transport of 

ribosomes and organelles, such as mitochondria, in both anterograde and retrograde 

directions. 

 

ii-2) Autophagy and retrograde transport  

Neurons are long-lived and non-dividing cells, and as such particularly 

susceptible to accumulating aggregates of misfolded proteins and damaged 
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organelles throughout their lives. Overall, cells have two major protein degradation 

pathways: the autophagy–lysosome pathway and the ubiquitin proteasome 

system (UPS). The UPS is the major proteolytic pathway in the cell and degrades 

short-lived soluble proteins (extended in next subsection). Autophagy is a lysosome-

dependent degradation process that recycles long-lived proteins and cytoplasmic 

organelles including the ER or mitochondria. Autophagy is tightly dependent on 

vesicle retrograde trafficking. Thus it is not surprising that many MN DGs 

orchestrating vesicle transport are concomitantly implicated in autophagy deficiency 

(reviewed in MND (Ramesh and Pandey, 2017). For instance, Dynactin is an ALS 

and SMAs DG that coordinates the retrograde axonal transport mediated by the 

Dynein motor protein (also a SMAs-linked DG). Similarly, On the other hand, 

Optineurin (OPTN) is a membrane trafficking protein that regulates the autophagy of 

damage mitochondria. VCP and the Sequestosome (SQSTM1) are also autophagy 

receptors implicated in ALS. Likewise, GEFs of Rab GTPases - as the previously 

mentioned C9orf72 and ALS2 - modulate both cytoskeleton dynamics and 

autophagy processes. Moreover, PLEKHG5 is a non 5q-SMA DG with GEF activity 

that regulates the autophagy of synaptic vesicles. CHMP2B is another ALS DG 

involved in the regulation of endosome and lysosome activities (Burk and 

Pasterkamp, 2019).  

 

iii) Protein homeostasis and ER stress 

The best-known histological hallmark of ALS is the accumulation of 

cytoplasmic protein aggregates. The aggregates are predominantly made up of TDP-

43 ubiquitinated protein but additional proteins encoded by DGs implicated in varying 

functions as hnRNP A1 and 2B1 or UBQLN2, OPTN, SQSTM1, VCP and PFN1 are 

also detected in these aggregates. These hallmarks suggest that the mutations in 

these genes might induce protein aggregation through GOF mechanisms. In parallel 

though, the cytoplasmic aggregates might also be the result of an exacerbated ER 

stress and proteasome impairment. For instance, ALS DGs VCP and CCNF regulate 

the E3 ubiquitin-protein ligase complex, while ERLIN1 mediates the ER-associated 

degradation (ERAD) pathway. On the other hand, UBQLN2 and SQSTM1 mediate 

the proteasomal targeting of misfolded proteins and bridge ERAD and autophagy 
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pathways (ER stress and proteostasis alterations in ALS reviewed in (Maharjan and 

Saxena, 2016; McAlary et al., 2020)). 

 

In addition to vesicle trafficking, VAPB is involved in the ER unfolded protein 

response (UPR) and its alteration has also been linked to the formation of intracellular 

protein aggregates. The accumulation of DGs involved in proteasome coordination is 

even more conspicuous in SMAs sprectrum (Figure 1.2B). In particular, it is worth 

highlighting the mutations in heat shock proteins (HSPB1, HSPB3, HSPB8), 

chaperones (DNAJB2) or ubiquitination modifiers (UBE1 and FBXO38) (heat shock 

response to protein misfolding in neurodegenerative diseases reviewed in (San Gil et 

al., 2017)). 

 

iv) Energy metabolism and mitochondrial stress 

The synaptic activity of neurons has intensive energy requirements. The healthy 

mitochondrial activity necessary to produce chemical energy (ATP) generates reactive 

oxygen species (ROS) as a byproduct. Thus, cells with such high-energy 

requirements as neurons are expected to generate more ROS and in turn, be more 

susceptible to accumulate free radicals. The accumulation of ROS can induce 

deleterious oxidative modifications on proteins, nucleic acids and lipids. The 

production of free radicals is compensated by ROS detoxifying enzymes as SOD1. 

The SOD1 enzyme detoxifies superoxide radicals into molecular oxygen and 

hydrogen peroxide. SOD1 was the first gene to be linked to ALS and latest surveys 

indicate it is implicated in 20% of fALS. These observations, together with the direct 

interconnection between cellular stress and protein aggregation, propelled oxidative 

damage as major potential cause MN degeneration (mitochondria deregulation in ALS 

is reviewed in (Smith et al., 2019). However, accumulating evidence indicates that 

SOD1-ALS does not exhibit a LOF mechanism. Several ALS-causing mutations in 

SOD1 do not alter the catalytic activity of the proteins but decrease the protein 

stability and can augment the protein fibrillation. Further, SOD1 has been detected in 

protein inclusions in 2% of ALS cases (McAlary et al., 2020). While it is evidence that 

some mutations can induce LOF of SOD1, recent studies show it is not sufficient to 

cause ALS (G. Kim et al., 2020). 
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Aside the disease mechanism of mutations in SOD1, we still find several ALS 

DGs to be involved in mitochondrial functions, CHCHD10 or NEK1 (Nguyen et al., 

2018). Mitochondrial dysfunction is even more conspicuous in SMAs (Figure 1.2B) 

being noteworthy the mutations in SCO2, Seipin (BSCL2), RARS2, or mitochondrial 

ATP synthases 6 and 8 (mt-ATP6, mt-ATP8) (Farrar and Kiernan, 2015). Beyond the 

alteration of mitochondrial proteins, it is also plausible that energy metabolism is 

impaired in MNs due to mitochondrial misallocation in the axon terminals and 

synapses (Burk and Pasterkamp, 2019; Ramesh and Pandey, 2017). Nonetheless, it 

must also be noted that ROS accumulation is a time-dependent cumulative process. 

Considering that neurons are particularly long-living cells, many authors argue the 

oxidative stress observed in MND patients is probably a late-stage hallmark and not a 

triggering event of MN degeneration. 

 

v) DNA damage  

DNA damage accumulation has also been a recurrent hypothesis to explain 

MN degeneration (DNA damage in ALS reviewed in (Kok et al., 2021). DNA damage 

occurs regularly during the normal physiological processes and numerous pathways 

have evolved to protect and repair DNA. However, certain conditions can aggravate 

DNA damage or impair pathways involved in DNA repair (DNA damage response, 

DDR). For instance, it is well described that the oxidative stress derived from ROS 

accumulation is a determinant factor on DNA damage increase. Likewise, RNA 

biogenesis involves an inherent risk of potential DNA damage. Thus, the perturbation 

of RNA metabolism pathways can similarly compromise genome stability. Due to the 

physical proximity during transcription, DNA and RNA molecules form hybrid 

structures known as R-loops. These are critical to pause RNA polymerase II 

progression and allow the correct transcription termination. Nonetheless, when 

transcription is concluded, R-loops have to be untangled to avoid DNA damage (R 

loops implication in DNA damage reviewed by (Rinaldi et al., 2021)). The ALS-

causing gene Senataxin (SETX) is a DNA/RNA helicase particularly involved in 

resolving the R-loops. It is not surprising to find that RBPs also display protective 

roles towards DNA damage and repair processes. RBPs as FUS and TDP-43 are 



Chapter 1: Introduction 

M.L. García-Vaquero, 2022 19 

able to bind RNA, DNA and proteins and so can operate as hubs to coordinate DDR 

pathways (ALS-linked RBPs in DNA damage is reviewed in (Gama-Carvalho et al., 

2017)). Similarly, several other genes associated with ALS including NEK1, SQSTM1, 

VCP and C21ORF2 are known to play a role in DNA repair (reviewed by (Kok et al., 

2021)). Likewise, in SMAs we may highlight intermediate filament of nuclear 

membrane LMNA and DNA/RNA helicase IGHMBP2 as they also establish 

interactions with DNA with potential risks for genome stability. 

 

ALS and SMA genetic overlap 
 

As discussed throughout this section, ALS and SMAs share conspicuous 

histological and molecular hallmarks. Although mutations in SMN contribute to ~95% 

of SMA cases (SMA-5q), the remaining SMAs DGs reveal manifest similarities. Overall, 

the proteins encoded by ALS and SMAs DGs are involved in the same functional 

processes and oftentimes, physically interact (discussed in (Gama-Carvalho et al., 

2017). Overall, it seems likely that MN degeneration can be triggered by a 

combination of several concomitant processes. In fact, the molecular functions just 

discussed could be considered a continuum of biological processes and as such, all 

the suggested pathomechanisms might possibly be snapshots of a larger 

phenomenon (Figure 1.3). Just as the investigation of fALS has revealed significant 

insights into the disease mechanisms, the integration of SMA and ALS molecular 

pathways may help to elucidate determinant events on MN degeneration. 

 

1.1.3  Social impact and therapeutic prospects 

 

ALS has a significant economic impact on patients, families, and national 

health systems. The manifestation of first symptoms commonly forces patients to 

discontinue working. Late disease stages require families to perform home 

modifications and, driven by income loss, to frequently undertake voluntary care 

tasks. The few treatments currently available are expensive and achieve modest 

improvements. Terminal stages require invasive interventions as tracheostomy and 

gastrostomy for assisted ventilation and feeding. These decisions cause a great 
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burden on the patient and families psychoemotional status. Achtert and Kerkemeyer 

have recently reviewed several studies evaluating the economic costs both at 

individual and government levels (Achtert and Kerkemeyer, 2021). The national 

expenditures associated to ALS greatly varied according to the distinct health 

systems evaluated ranging from €149 million in Canada and €1,329 million in USA 

per year. Even though ALS is a rare neurodegenerative disease, the study estimated 

that the national cost per ALS patient is higher than other neurologic diseases like 

dementia and Parkinson’s disease. While the direct annual costs per patient averaged 

€1,168 in the Spanish health system, the additional medical care options can reach 

€50.000 per family per year (Darbà, 2019).  

 

At present, three treatments for SMN-dependent SMA (SMA-5q) have been 

approved by the US Food and Drug Administration (FDA). Spinraza® (2016) and 

Risdiplam® (2020) treatments are aimed to increase SMN protein production using 

antisense oligonucleotide therapy (ASO) and small molecule to modulate SMN2 

splicing, respectively. Zolgensma® (2019) is a vector-based gene therapy to deliver 

full-length SMN1 cDNA into target MN cells (reviewed by (Ojala et al., 2021; 

Schorling et al., 2020)). These therapies have slowed the progression of SMA-5q 

subtypes and improved the survival rate of the patients (reviewed by (Mercuri et al., 

2020; Ojala et al., 2021)). Nonetheless, SMN1 is highly expressed prenatally in most 

organs, which indicates it could be implicated in organ morphogenesis. In fact, there 

is mounting evidence that other tissues beyond MN circuitry are vulnerable to SMN 

deficiency including cardiac, gastrointestinal or endocrine systems (Ojala et al., 2021; 

Schorling et al., 2020). Therefore, more effort needs to be put into prenatal 

screenings for SMN1 mutations and in the design of additional therapies targeting 

other tissues than CNS. At the same time, ASO therapies targeting ALS are also 

being developed. The most promising treatments at present, are designed to lower 

down the levels of C9orf72 or SOD1 proteins in GOF models (perspectives in ALS 

therapies are reviewed in (Masrori and Van Damme, 2020; Xu et al., 2021). However, 

the genetic causes of ALS and SMAs are heterogeneous, so gene therapy is not as 

cost-effective as it is for SMA-5q cases.  
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The two treatments already approved for ALS treatment are directed to 

neuroprotection. Riluzole was the first drug approved by the FDA to treat ALS in 

1995. Riluzole MN protective roles have been related to its capacity to decrease 

glutamate release and block MN sodium channels. Likewise, edaravone is a free 

radical scavenger employed to decrease oxidative stress. Although it is administered 

in several countries including US, Canada, Japan or South Korea, its use has not 

being yet approved in the European Union. In any case, riluzole and edaravone 

benefits are modest and cannot reverse the previous MN degeneration thus, they are 

not a definite treatment for ALS. Other drug compounds under scrutiny include 

regulators of protein aggregation, autophagy or the stimulation of muscle growth, 

among others. Likewise, studies using cell-based therapy are also accumulating 

promising results (reviewed in (McAlary et al., 2020; Schorling et al., 2020; Xu et al., 

2021)). 

 

One of the most significant limitations in MND treatment is that the majority of 

MND cases present as clinical diseases, meaning that can only be diagnosed by the 

detection of the initial muscle weakness. Unfortunately, first symptoms arise after a 

vast and rapid MN decay (Aggarwal and Nicholson, 2002). The accumulation of 

potentially toxic cytoplasmic aggregates and vast MN loss prior to the manifestation 

of the first symptoms underlines the urgency for the identification of early pre-

symptomatic biomarkers. While it is true the search for biomarkers at biofluids is a 

promising enterprise, the latest works still present incongruent results (reviewed by 

(Chipika et al., 2020)). To date, one of the most significant evidences of a 

presymptomatic trait in ALS patients is the elevation of neurofilament light chain (NfL) 

in the serum and cerebrospinal fluid a year before the emergence of muscle 

weakness. However, the rapid MN loss at presymptomatic stages predicts the 

diagnostic protocols would require much more anticipation to avoid irreversible 

neuromuscular degeneration. 

 

The lack of a clearly defined MND pathogenesis mechanisms leads to limited 

diagnosis and therapeutic options. Even with an incomplete view, it remains vital to 

identify the leading determinants of MN degeneration. The identification of converging 
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molecular hubs or bottlenecks across SMA and ALS subtypes could potentially 

enable the design of early diagnostic protocols and unified drug treatments.  

 

1.1.4  Drosophila as a model for neuroscience 

 

The fruit fly Drosophila melanogaster has been used as an animal model in 

biological sciences for over 100 years. More notably, in the last decades it has been 

extensively employed in neurodegenerative research (review in (Bolus et al., 2020; 

van der Voet et al., 2014). The fruit fly offers numerous benefits when compared to 

vertebrate animal models as chicken or rodents. The fly has a short life cycle and high 

offspring numbers. The development of an adult fly only takes 10 days from 

fertilization and the female fly can produce up to 1500 eggs in its lifetime. Due to its 

small size, it is easy to handle in the laboratory and requires low costs for 

maintenance.  

 

One of the most profitable features of fly as a research model is its easy 

genetic manipulation. The UAS/Gal4 system is one of the most versatile expression 

systems developed in Drosophila (Brand and Perrimon, 1993). The UAS/Gal4 system 

can be used for either transgene overexpression or gene knockdown through RNA 

interference (RNAi) (Piccin et al., 2001). The RNA interference is conducted by 

inducing the expression of a double-stranded RNA (dsRNA) that forms short-hairpin 

structures (shRNA) that interact with target RNA to impede its translation (Paddison 

et al., 2002). The transgene or dsRNA is inserted downstream of an upstream 

activating sequence (UAS). The UAS is recognized by the yeast transcriptional 

activator Gal4, inducing the strong expression of the downstream sequence. Gal4 

expression can in turn be regulated by a wide selection of promoters to achieve time- 

or tissue-specific expression. Expression modulation is determinant in the 

investigation of deleterious mutations implicated in adult-onset diseases such as ALS. 

 

To modulate spatial expression, we can use promoters of tissue-specific genes 

as for instance the Elav fly neuron-specific gene. On the other hand, temporal 

expression can be modulated by incorporating promoters of hormone-inducible 



Chapter 1: Introduction 

M.L. García-Vaquero, 2022 23 

receptors into the Gal4 system, as done in the GeneSwitch system (Osterwalder et 

al., 2001). In this way, the researcher modulates transgene expression simply by 

hormone feeding. Likewise, many researchers use the temperature-sensitive mutant 

Gal80TS (McGuire et al., 2003). Gal80TS is a transcriptional repressor of Gal4 active at 

18º C. Then, according to the study design, the researcher can raise the temperature 

> 25º C to block Gal80TS and permit the transgene or dsRNA expression.  

 

The UAS and Gal4 constructs are typically inserted in different transgenic fly 

lines with selection markers, allowing the generation of different models by fly 

crossing procedures. The large collection of inducible tissue and cell-specific 

promoter elements currently available enables the development of a wide range of 

highly specific genetic tools. Likewise, the simplicity of Gal4/UAS system greatly 

facilitates the implementation of high-throughput assays to evaluate genetic modifiers 

or candidate DGs in vivo. Furthermore, the possibility of combining several 

UAS/GAL4 systems in a single fly model enables the dissection of complex molecular 

networks. 

 

Fly and human similarities 
 

Despite the nervous system of the fly being anatomically much simpler than the 

human, both reveal key similarities. The Drosophila CNS is composed by a two-lobed 

brain with two main cell types, glia and neurons. Flies also have a segmented nerve 

cord similar to the mammalian spinal cord. The simplicity of fly anatomy greatly 

facilitates the isolation, manipulation and visualization of MNs and their synaptic 

contact with the muscle fiber at the NMJ. The molecular composition and physiology 

of the NMJ is most similar to mammalian glutamatergic excitatory synapses, 

facilitating the examination of the molecular mechanisms underlying synaptic activity. 

Furthermore, the fly model also enables the monitoring of motility and behavioral 

deficits namely, memory and learning capabilities. Despite the evolutionary distance 

between humans and fly, there is a notable conservation in genes and pathways. 

According to the Ensembl database, human and fly genomes include 20,465 and 

13,969 protein-coding proteins, respectively (GRCh38.p13 and BDGP6.32, 

www.ensembl.org). According to the DIOPT orthology mapping tool, 40.7% of fly 
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genes are orthologs covering 55.4% of human coding-genome. Inversely, the 53.5% 

of human genes cover 66.5% of the fly coding-genome (September 2020 version (Hu 

et al., 2011)). More important, most human MN DGs are evolutionarily conserved in 

Drosophila (reviewed in (Charng et al., 2014; Olesnicky and Wright, 2018; van der 

Voet et al., 2014). 

Fly to human translation 
 

Drosophila also has certain limitations that make knowledge transference back 

to human models more difficult. Decisive pathogenic factors associated to MND, 

such as the role of the adaptive immune system, are specific to vertebrate species 

and therefore, cannot be reproduced in Drosophila models. 

Likewise, mutant fly models do not always display the same phenotypes as 

those observed in humans. While the human and fly proteomes present a resounding 

conservation, the protein-interaction (PPI) networks reveal a notable discrepancy 

(Gandhi et al., 2006). As expected, the essential interactions between partners in 

protein complexes are more conserved than transient regulatory interactions (Brown 

and Jurisica, 2007). This indicates that fly and human share the fundamental 

molecular functions but differ in more complex physiological processes. This 

observation, in turn, might explain why similar fly and human models might result in 

different phenotypic outcomes. Therefore, even though fly models are really valuable 

to dissect fundamental biochemical pathways, these studies must always be carefully 

translated to the human context. 
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1.2  Systems biology and omics 
 

Reductionism in biology is the idea that biological processes are ultimately 

defined by the physico-chemical properties of its elements. Thus, a disease 

phenotype is conceived as the physical malfunction of discrete molecular elements. 

The development of molecular biology over the past half-century has made 

methodological reductionism a central approach to study biological systems. In fact, 

modern biochemistry and cellular biology have been indispensable for the advances 

in current medicine. Notwithstanding, reductionist approaches fall short when 

investigating multigenic diseases in such cases as MND. This limitation is mostly due 

to the fact that biological entities are genuinely complex.  

 

Complex systems are characterized by two main properties; i) they are 

composed of many discrete elements and ii) their components are highly 

interconnected in a non-linear fashion. We find examples of complex systems across 

all levels of biological organization, ranging from the molecular and cellular realm to 

tissues, organisms, and whole populations or ecosystems (Figure 1.4A). The 

entangled relationship and dependencies between elements hamper the prediction of 

the system’s behavior. In other words, the properties of the system are said to be 

emergent phenomena, only attributable to the collection of relations between the 

discrete elements (Anderson P.W., 1972).  

 

Systems biology aims to address biomedical challenges by capturing, rather 

than reducing, the complexity of the biological system of interest (Figure 1.4B). 

Systems biology was initially a theoretical science. However, the standardization of 

high-throughput biotechnologies, together with the development of public data 

repositories shared through the Internet, has enabled researchers to amass large 

collections of biological data and construct highly detailed biological models.  
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Figure 1.4 Biological systems are genuinely complex 
(A) We find examples of complex systems across all scales in nature. Complex systems are made by 
numerous elements interrelated in a non-linear manner (blue boxes). (B) The complex organization of 
biomolecular elements hinders the identification of disease triggering events. Many of the limitations in 
biomedical research are due to applying reductionist approaches that consider that cell malfunction can be 
explained by mutations in single genes (red boxes). By contrast, systems biology aims to integrate the 
complex interactions between the biomolecules. (C) The representation of complex systems in networks 
facilitates their interpretation and modeling. Network theory applied to biomedical research has provided 
groundbreaking insights towards the mechanisms of cellular organization. Likewise, the principles of 
network biology can be applied to investigate the etiology of multigenic diseases such as MNDs.  
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The biomolecular elements that shape living cells are commonly classified into 

different 'omic' categories. Best-known categories include genomics, 

transcriptomics, proteomics or metabolomics. The ulterior objective of omics is to 

identify and quantify the complete pools of molecular components and their 

interactions in a given biological system. To this purpose, biochemical approaches - 

now in a high-throughput fashion - are pivotal for completing the omic databases that 

will feed the biological models. The “ome” suffix has been extended to the research of 

other types of large-scale biological information including DNA or protein 

modifications (epigenome, phosphoproteome), disease-gene associations 

(diseasome) or functional annotation (functionome). In turn, the investigation of these 

large datasets requires the establishment of innovative analytical methods. For 

instance, the representation of biomolecular interactions in networks facilitates the 

integration of complex data and the application of graph theory concepts to predict 

biological phenomena. 

 

The research work presented here focused on investigating cell homeostasis 

and for simplicity; we considered the cell as a whole complex system and obviated 

the interactions with its environment (Figure 1.4C). Protein physical collaboration lies 

at the center of any cellular activity. Therefore, this work was centered on studying 

protein-protein interaction (PPI) networks. The construction of the networks required 

both transcriptional (Section 1.2.1) and interactomic (Section 1.2.3) data. The 

methods and outputs generated in this thesis were interpreted using Gene Ontology 

(GO) functional annotations (Section 1.2.4) and disease-gene (DG) associations 

(Section 1.2.5). Overall, the computational methods presented here were designed 

and evaluated using human data. Additionally, Chapter 3 presents the analysis of in-

house transcriptomic sets derived from Drosophila MND models and so the output 

interpretation required the integration of fly orthology data (Section 1.2.6). Each of 

the following subsections briefly describes the technologies most commonly 

employed to generate omic knowledge, their current limitations and the public 

repositories where we retrieved the respective datasets. Section 1.3 will present 

network biology concepts employed to evaluate the omic datasets introduced in this 

section. 
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1.2.1  Transcriptomics 

 

The transcriptome describes the full collection of all RNA molecules in a system 

(e.g., cellular structure, cell, tissue, organism) in a given moment. There is a plethora 

of types of RNA molecules depending on their structure and function, but we will only 

focus on protein-coding messenger RNA (mRNA). The relative quantification of mRNA 

molecules is commonly employed to address gene expression changes under 

different experimental conditions. Microarray and RNA sequencing-based methods 

(RNA-seq) are the most popular techniques to collect transcriptomic data. 

 

Microarray platforms were developed in the 1990’s and became the first 

large-scale system to efficiently measure gene expression. Microarrays measure the 

abundance of a pre-defined set of transcripts by probe hybridization. Affymetrix 

microarrays were the most popular platforms. Later in the mid 2000s, with the arrival 

of next generation sequencing (NGS) technologies, RNA-Sequencing (RNA-seq) 

methods emerged as an attractive high-throughput alternative to traditional 

microarray platforms. In broad terms, RNA-seq uses NGS technology to determine 

and quantify the sequence of all RNA molecules present in a sample. Thus, one major 

difference regarding microarray technology is that RNA-seq does not require previous 

knowledge on the RNA being investigated. Additionally, RNA-seq requires less input 

RNA (pg Vs. μg) and has a broader detection range i.e., can simultaneously detect 

RNA species in low and high abundance (reviewed in (Lowe et al., 2017)). We find 

several technologies and protocols for RNA-Sequencing (RNA-seq). The Illumina 

short-read sequencing is the dominant technology employed to date, but third-

generation technologies as long-read Oxford Nanopore are firmly taking hold. The 

protocols have direct implications on the ability of the experiment to address specific 

biological questions and on the generation of biases in RNA quantification (reviewed 

(Stark et al., 2019)). Compared to microarray, RNA-seq methods require additional 

computational analysis for the reconstruction of the sequence reads into the final 

RNA transcripts. Thus, RNA-seq presents unique computational challenges namely in 

data storage and data analysis. In any case, both microarray and RNA-seq provide 

normalize levels of mRNA abundance that allow the characterization of the 
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transcriptomic profile of a given sample and perform differential gene expression 

(DGE) analysis between biological samples. 

 

The Sequence Read Archive (SRA) (https://www.ncbi.nlm.nih.gov/sra) and 

European Nucleotide Archive (ENA) (https://www.ebi.ac.uk/ena) are the largest 

publicly available repositories of raw high-throughput sequencing data. Gene 

Expression Omnibus (GEO) (ncbi.nlm.nih.gov/geo/) and BioStudies (formerly 

known as ArrayExpress) (ebi.ac.uk/biostudies/) (Barrett et al., 2013; Sarkans et al., 

2021) are secondary services linked to the SRA and ENA repositories, respectively. 

These platforms store varied types of biological datasets including microarray and 

RNA-seq data, and provide comprehensive meta-data about the experiments. 

Beyond bulk data download, GEO makes available an interactive web tool named 

GEO2R that allows users to compare gene expression profiles from different 

experiential conditions within a GEO Series.  

 

1.2.2  Proteomics 

 

The proteome is the entire collection of proteins that is expressed in a 

biological system in a given state and time. High-throughput protein quantification 

using mass spectrometry-based methods is still a challenging task. Disregarding the 

time and costs of performing high-throughput quantification, additional drawbacks of 

mass spectrometry are the raw data processing and analysis complexity. Most 

important, due to technical limitations, quantitative proteomic data only represents a 

fraction of the complete proteome. Thus, the current efforts and value of the 

information provided suffer from significant limitations. To circumvent this, 

transcriptomic profiling is frequently used to extrapolate the proteome composition of 

a given condition. Notwithstanding, transcript levels do not necessarily correlate with 

protein abundance and thus caution must be taken when performing these 

assumptions. Many researchers, including us, opt to consider protein expression as a 

binary value by imposing a transcript level cutoff. 
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The ProteinAltas (proteinatlas.org) is web-based database that makes 

available highly detailed spatial information of protein expression at the subcellular 

level in distinct cell types and health conditions (Uhlén et al., 2015). The ProteinAtlas 

integrates several types of omic data including mass spectrometry-based proteomics, 

transcriptomics and antibody-based imaging.  

 

1.2.3  Interactomics 

 

The physical interaction between the molecular constituents of the cell is the 

driving force of any biological activity. The interactome describes the whole set of 

molecular interactions but it is often studied in separated networks according to the 

different biochemical families. The most popular interactome networks address 

protein-protein interactions (PPI), DNA-protein or RNA-protein interactions (regulatory 

networks) or enzyme-metabolite interactions (metabolic networks). Section 1.3 will 

introduce most relevant properties of biological networks. 

 

Protein-protein interaction networks 
 

The latest efforts of the Human Proteome Organization (HUPO) to gather the 

complete human proteome generated an encyclopedia of 19,773 protein-coding 

genes (Adhikari et al., 2020), which gives a total of >195.106 possible binary PPIs to 

evaluate. Although the potential interactome could reach ~200 million PPIs, 

Venkatesan and colleagues estimated the human complete interactome should be 

formed by ~130,000 ±30.000 binary interactions (Venkatesan et al., 2009). The latest 

mapping reference recently reported a total of 53.000 PPIs (Luck et al., 2020), which 

would represent - in the most optimistic scenario - ~40% of the interactome. At 

present, interactome reconstruction endeavors consist on systematically testing all 

possible physical PPIs. This massive task urges for the standardization of efficient 

high-throughput PPI detection protocols. The most popular approaches currently 

available are affinity mass purification and yeast two-hybrid screening. 
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In a typical affinity mass purification (AP-MS) assay, the protein sample is 

first incubated with the potential interacting target. Then, the proteins interacting with 

the target are purified in an affinity column and finally identified by mass spectrometry 

analysis. AP-MS is limited to address the interactions happening between a single 

target against pools of 400–2000 proteins (reviewed by (Low et al., 2021). This 

feature restricts the build-up of high-throughput protocols to characterize all the 

possible pairs of interactions across the proteome. On the other hand, yeast two-

hybrid (Y2H) screening is a protein-fragment complementation assay. The proteins of 

interest are each covalently linked to two respective fragments of a transcription 

factor (TF). If the bait and prey physically interact, the fragments of the TF come 

together and activate the expression of a reporter gene. In contrast to AP-MS, Y2H is 

the only technology efficient to produce large-scale interactomic data. Indeed, the 

recent efforts to capture human interactome map required the screening of ~150.106 

possible PPIs using Y2H (Luck et al., 2020).  

 

Once again, the two techniques have distinct detection biases but combined 

return complementary views of the interactome. AP-MS is prone to detect protein 

complexes and Y2H tend to detect binary interactions. A main drawback of AP-MS is 

that it frequently identifies indirect interactions. On the other hand, Y2H is an artificial 

system that can only be employed in a synthetic scenario and does not consider 

whether the proteins are present at the same sub-cellular context or biological 

condition. Therefore, many of the PPIs detected through Y2H might be not 

biologically meaningful. To counter back this limitation, numerous authors have 

proven the benefits of integrating tissue-specific (TS) transcriptomic data to filter 

potential false positive PPIs and reconstruct TS-interactomes.  

 

As one might expect, PPI techniques are prone to detect more stable PPIs. 

However, evidence is mounting that stable PPIs constitute a minority of the 

interactome (Hein et al., 2015). In fact, transient interactions have critical roles in the 

coordination of complex processes and are as equally fundamental to characterize 

the cell complex behavior as stable PPIs (Ghadie and Xia, 2022). Furthermore, 

unsurprisingly, early attempts to characterize the interactome were directed to the 



Chapter 1: Introduction 

M.L. García-Vaquero, 2022 32 

characterization of PPIs between proteins with anticipated medical interest. This bias 

has likely skewed the interactome towards specific protein populations. 

 

APID (apid.dep.usal.es) is a PPI repository that provides a unified version of the 

protein interactome including the five primary databases of molecular interactions: 

BioGRID, DIP, HPRD, IntAct and MINT (Alonso-Lopez et al., 2016; Alonso-López et 

al., 2019). The repository enables to filter PPIs according to the number of 

experimental validations. It collects the latest interactome datasets for 25 species, 

which facilitates the design of cross-species analysis protocols. Beyond the 

identification of binary PPI interactions, the characterization of stable protein 

complexes, also referred to as to molecular machines, is fundamental to describe the 

cell’s biochemical and mechanical functions. To that purpose, CORUM 

(mips.helmholtz-muenchen.de/corum/) is a gold-standard repository that provides 

manually curated and experimentally characterized protein complexes (Giurgiu et al., 

2019). 

 

RNA-protein interaction networks 
 

RNA-binding proteins (RBP) are key regulators of RNA homeostasis. RBPs 

bind to RNA molecules and varying proteins building large complexes to regulate 

RNA transcription, stability, splicing and localization, among other activities (Armaos 

et al., 2021). Therefore, RBP-RNA interaction networks provide a comprehensive 

view of the regulation layers controlling the RNA metabolism and so reveal potential 

mechanisms of deregulation. Just as there are many types of RNA, many RNA-

protein networks can be generated. We only focused on RBP-mRNA networks but it 

must be noted that non-coding RNAs are particular relevant for mRNA regulation 

(review of diverse RNA-protein resources (Yi et al., 2017)). 

 

In this work we employed a RIP-seq strategy to characterize RNA interactions 

of RBPs encoded by ALS and SMA genes in Drosophila models. The assay consists 

in immunoprecipitating (IP) the RBPs of interest from a sample followed by 

sequencing of the bound RNAs. Although RIP-seq confers high-confidence 

interactions, RBP-IP is not scalable to characterize the complete RNA-protein 
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interactome. There are varying options to characterize the interactions in a relatively 

high(er)-throughput manner (reviewed in (Hentze et al., 2018)). However, a large 

fraction of the interactions in the public repositories are inferred from algorithms using 

high-throughput sequencing data to identify RNA-binding motifs and domain (RBD) 

information (Yi et al., 2017). Around 1,400 human proteins have been experimentally 

determined to bind RNA. About half of the proteins in each RNA interactome lacked 

known RBDs, and hundreds had no known relationship to RNA biology (Hentze et 

al., 2018). These observations indicate that state-of-the-art RNA-protein interaction 

networks are far from complete and, more importantly, we do not yet know how to 

interpret the functional implications of a large fraction of the RNA-protein interactions. 

1.2.4  Functionome 

 

Cataloging the molecular players and their functional capabilities is critical to 

investigating the different types of cell programs and address pathological conditions. 

With this objective, the 'functionome' defines the compendium of biological functions 

a cell can exert, ranging from molecular activities through protein complexes to 

coordinated cell activities as phagocytosis. Therefore, even though it does not qualify 

precisely as an omic category, many researchers consider it as such. It must be 

noted that the functionome was originally built by researchers to classify biological 

processes and so it presents distinctive features from the canonical omic categories 

(Figure 1.5). 

 

The Gene Ontology (GO) consortium (geneontology.org/) provides the 

framework and the set of concepts for describing the functions of gene products 

from all organisms (Ashburner et al., 2000; Carbon et al., 2021). Gene ontology is 

divided in three independent domains to distinguish the different aspects of a gene 

product function: molecular function (MF), cellular component (CC) and biological 

process (BP). MF terms describe the actions or activities of a gene product or 

molecular machine and CC terms describe their relative localization in the cell. 

Biological Process (BP) is the most extended category and represents the ultimate 

biological programs accomplished by multiple molecular activities. Gene functional 

associations can be addressed using varied evidence protocols. Initially, GO terms 
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were manually annotated based on published experimental evidence and so were 

biased towards processes with anticipated research interest. Later, thanks to the 

accumulation of multivariate biological data, prediction algorithms have notably 

improved annotation and now are pivotal for electronically inferring GO terms. These 

assist in providing a broader coverage of the functionome, albeit also introducing a 

large fraction of false positive annotations (Yu et al., 2017). 

 

Beyond the functional characterization of single gene products, most molecular 

biologists exploit GO annotations to biologically interpret large data outputs derived 

from high-throughput assays. In broad sense, functional enrichment analysis (FEA) 

is a statistical method to determine the functional traits significantly associated to a 

given gene or protein list. As recently reviewed by Maleki and colleagues, we can find 

a plethora of functional enrichment strategies (Maleki et al., 2020). The simplest of 

these tools employ the hypergeometric test (also known as Fisher's exact test). This 

test calculates the probability of randomly selecting x GO terms in a protein sample 

with size m when comparing to the distribution in a certain background population n. 

In short, it calculates the statistical significance of the proportions in a given 

contingency table. One reason for the extensive use of GO data is its simplicity. FEA 

can be used without deep understanding of bioinformatics or biostatistics (Huang et 

al., 2009). However, GO annotation is not exempt from biases and limitations that 

affect FEA outcomes (discussed in (Gaudet and Dessimoz, 2017). The two most 

popular pitfalls when functionally characterizing a gene set are (i) the correct 

assignment of the background universe and (ii) the management of redundant 

outputs. 

 

It should be noted that the GO knowledgebase collects the functions 

associated to all the proteins in the proteome without considering tissue or cell-

specific contexts. The inexperienced users frequently dismiss that the default 

enrichment analysis evaluates the entire GO annotation as the distribution 

background. However, the statistical enrichment must always be calculated against 

the experiment-specific gene universe. Another common oversight is the 

representation of FEA results. Many users opt to summarize the analysis by outlining 

the top enriched functional terms, either considering the total number of proteins 
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annotated or the statistical p-value. However, the top GO terms do not necessarily 

describe the complete functional landscape of a given gene set.  

 

At this point it is important to refer that the GO terms are organized in directed 

acyclic graphs (Figure 1.5). This organization represents the hierarchical relationship 

between the functions in such a way that the less specific terms connect the 

increasingly detailed functional annotations. Therefore, each gene is annotated with 

the most specific term but also with all the functional predecessors. Due to the 

hierarchical structure of GO data (further discussed in (Gaudet and Dessimoz, 2017), 

most FEA outputs return a considerable fraction of uninformative or redundant 

functional terms. In order to simplify the FEA outputs, the user can discard 

uninformative GO terms by applying different strategies.  

 

Semantic similarity algorithms exploit the graph structure of the GO to identify 

the functions with less descriptive value. The hierarchical structure of GO enables the 

evaluation of the information content of a functional term according to its position in 

the graph (Figure 1.5). For instance, top positioned terms describe general functions, 

while their descendants gradually incorporate more specific information. Likewise, the 

terms descending in the same branch are restricted to the same function in 

increasing levels of detail (Further discussed in (Yu, 2020)). Revigo 

(http://revigo.irb.hr/) is a web-based tool designed to simplify a predefined functional 

enrichment by applying varied semantic similarity algorithms (Supek et al., 2011). It 

does not require previous computational expertise and provides appealing 

visualization options. On the other hand, the GOSemSim R package implements 

numerous semantic algorithms to simplify functional enrichment outputs in R 

environment (Yu et al., 2010). 

 

Although possible, the likelihood that two distinct functions are coordinated by 

the exact same protein groups is quite remote. While acknowledging that this may 

not always be the case, it can be assumed that two GO terms are highly redundant if 

they share a large fraction of the annotated proteins. We can evaluate the similarity in 

protein composition using Jaccard's similarity index (Figure 1.5). The Jaccard 

index is defined as the size of the intersection (common proteins) divided by the size 
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of the union of the sample sets (total proteins in the two GO terms). When the two 

GO term sizes are very unbalanced it is preferable to apply the Simpson's similarity 

index since it divides the protein intersection by the size of the smallest GO term. 

Once the similarity index is calculated for the complete list, we can reduce the FEA 

result by merging the GO terms with high similarity. 

 

Besides Gene Ontology, FEA methods can exploit different pathway-centric 

functional annotations as Reactome, KEGG or WikiPathways (benchmarking analysis 

of these databases for FEA is discussed in (Mubeen et al., 2019). These databases 

are more stable and contain less false positives than GO. However, ontology 

annotations give more flexibility and capture the complexity of protein functional 

relationships better. An additional benefit of GO annotation that we exploited in the 

last chapter of this work is that it employs a common vocabulary across different 

species and thus facilitates cross-species knowledge integration. 

 

1.2.5 Disease-gene association databases 

 

The prioritization of disease gene (DG) candidates requires a minimum set of 

known DGs. Prior to the annotation of disease-gene relations, it is equally necessary 

to establish a unified classification system to describe diseases. To that purpose, the 

Unified Medical Language System (UMLS) (http://umlsks.nlm.nih.gov) integrates 

and classifies standard terminology regarding pathological stages in a similar 

structure as GO (Bodenreider, 2004). In turn, UMLS also suffers from exceeding 

redundancy and benefits from the implementation of similar simplification methods as 

Jaccard's similarity. 

 

DisGeNET (www.disgenet.org/) is one of the largest publicly available 

collections of genes and variants associated to human diseases (Piñero et al., 2020). 

It integrates varied types of evidence such as expert curated repositories, genome-

wide association studies (GWAS), animal models or text mining of scientific literature. 

Moreover, the repository offers original metrics to assist the prioritization of genotype-

phenotype relationships.  
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Figure 1.5 Gene Ontology (GO) hierarchy and functional enrichment analysis (FEA) 
(A) GO hierarchy. Functional annotations are organized in increasing detail of description. (B) The 
hypergeometric test is the simplest functional enrichment analysis (FEA) method. It evaluates the probability 
of retrieving a number elements of a given input set from a known background distribution. (C) FEA might 
return redundant results. User can apply different simplification strategies such as simplification by 
semantic similarity or gene overlap. Semantic similarity evaluates the information content in GO hierarchy. 
Jaccard's similarity coefficient can be applied to evaluate gene intersection. Both methods return a 
coefficient that the user can adjust to combine redundant functional terms into simplified groups. 
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On the other hand, Online Mendelian Inheritance in Man (OMIM, 

www.omim.org/) is a knowledge based, manually curated and daily updated 

repository of human genes and genetic phenotypes (Amberger and Hamosh, 2017). 

Initially focused on monogenic disorders, it nowadays includes information on 

multifactorial diseases. However, the lack of a controlled vocabulary and consistent 

annotations hampers the retrieval of information. 

1.2.6  Drosophila databases 

 

Due to obvious ethical reasons, biomedical research relies on experimentation 

in animal models. As introduced in Section 1.1.3, Drosophila melanogaster is one of 

the most popular invertebrate models in neuroscience research. In order to retrieve 

valuable insights from fly models, translational researchers require detailed information 

concerning the relationships between predicted human and fly orthologs. In that 

sense, the Integrative Ortholog Prediction Tool (DIOPT) (flyrnai.org/diopt) is a 

valuable tool that facilitates the recovery of human and fly orthologs (Hu et al., 2011). 

DIOPT integrates the various ortholog predictors publicly available to calculate 

orthologous gene-pair relationships. Beyond gene orthology, FlyBase 

(flybase.org/) is the most popular repository of information on experiments conducted 

in Drosophila (Larkin et al., 2021). FlyBase gathers literature research, reagent 

resources and high-throughput data derived from diverse arrays. On the other hand, 

FlyAtlas2 (www.flyatlas2.org) collects gene expression data derived from RNA-seq 

experiments in isolated tissues and developmental stages of Drosophila melanogaster 

(Leader et al., 2018). 

 

1.2.7  Multi-omics integration 

 
Interactions between biomolecules are not restricted to each type of 

biochemical family. Thus, the integration of the assorted omic data such as 

genomics, metabolomics, epigenomics or microbiomics into multi-omic networks is 

essential to reconstruct a more complete vision of the system’s organization. 

However, multi-omics data integration requires complex mathematical and statistical 
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tools to correlate the different types of biological data (Subramanian et al., 2020). 

Thus, the integration of multi-omics data is a long-term ambition that is beyond the 

scope of this thesis. Instead, this work takes a first step in evaluating the organization 

of tissue-specific protein interaction networks. Table 1.2 collects the public 

repositories and databases employed in the work presented in this thesis.  

 

 

 
Table 1.2 Summary of omic datasets used in the thesis 
 Brief description of the public repositories used to access the omic data employed in the work presented 
in the thesis 

 

As will be expanded in next section, network-based approaches are essential 

to explore and interpret the outcomes derived from experimental omic datasets. The 

characterization of functional and physical interactions occurring between proteins 

can reveal relevant molecular players in normal and disease cellular states.  

  

Public repository Repository aim Repository URL

Transcriptomics GEO Raw and pre-processed transcriptomic datasets ncbi.nlm.nih.gov/geo

Proteomics ProteinAtlas Multivariate protein expression data proteinatlas.org

APID Compendium of protein-interaction databases apid.dep.usal.es

CORUM Manually curated protein complex interaction data mips.helmholtz-
muenchen.de/corum

Gene Ontology Gene-functional associations www.flyrnai.org/diopt

REVIGO Functional enrichment analysis simplification tool http://revigo.irb.hr

UMLS Unified medical language system http://umlsks.nlm.nih.gov

DisGeNET Disease-gene association database www.disgenet.org

OMIM Disease genomic and phenotypic information www.omim.org

FlyBase Drosophila-centric multivariate database www.flybase.org

FlyAtlas2 Drosophila transcriptomic database www.flyatlas2.org

DIOPT Fly-human ortology database www.flyrnai.org/diopt

Omic

Other

Biological knowledge resource

Drosophila knowledge

Functional-associations

Interactomics

Disease-associations
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1.3  Network biology 
 

 

Systems biology investigates how the relationship between the elements of a 

complex system gives rise to the biological phenomena observed in nature. Thus, 

systems biology moves the study of interest from single molecular elements to the 

characterization of their interactions. Graphs became cardinal to represent complex 

interactions and model the outcomes of these systems. A graph diagram is a 

mathematical structure used to represent collections of discrete objects and the 

relationships between them. The representation of molecular interactions in graphs 

not only facilitates the integration of complex data but also the application of graph 

theory concepts to predict biological phenomena. Graph theory was first introduced 

in 1736 by mathematician Leonhard Euler and aims at studying the topological or 

structural properties of graphs. However, it was not until the early 2000's that 

Barabási and Olvait realized the potential benefits of implementing graph theory in 

biomolecular research (Barabási and Oltvai, 2004). Although they are not strictly 

synonyms for simplicity, the terms graph and network will be used in this thesis with 

the same meaning. 

 

While the previous section presented the conceptual framework of systems 

biology and discussed the omic approaches employed in this thesis, this section is 

focused on theoretical and practical notions of network biology. Section 1.3.1 and 

Section 1.3.2 introduce the basic terminology and network properties necessary for 

a more thorough discussion on the topic. Once the foundations are established, 

Section 1.3.3 and Section 1.3.4 describe the archetype structure of biological 

networks and its biological interpretation. Next, Section 1.3.5 refers to the most 

popular applications of network biology and concludes discussing concepts 

particularly relevant for the design of the network-based methods presented in 

Chapter 2 and Chapter 3.  
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1.3.1  Basic notions of biomolecular networks 

 

A network is a representation of relations between discrete objects within 

complex systems. In cellular networks, the nodes represent macromolecules such as 

DNA, RNA, proteins or metabolites, and the edges depict their functional or physical 

relations. We find varying types of networks according to the type of biological 

information we intend to represent (Figure 1.6A). The edges can be directed or 

undirected depending on whether they represent directional interactions, such as 

enzyme-substrate (Figure 1.6b5), or undirected relations, such as physical protein-

protein or RNA-protein interactions (Figure 1.6b1, b4). In parallel, the edges can be 

weighted or unweighted, depending on whether the interactions incorporate 

quantitative information. Edge weight can be a discrete variable representing 

categorical information as "repression" or "activation" (e.g., -1, 1), or a continuous 

variable to describe interaction strength, stoichiometry relations, or co-expression 

correlation data, among others (Figure 1.6b2). Heterogeneous macromolecular 

interactions can also be portrayed in multilayered networks. In these networks, each 

layer is restricted to the interactions between the elements of a single class, while the 

inter-layer edges represent the relations across the distinct macromolecular entities. 

The most illustrative example are metabolic networks, which usually separate the 

enzymes from the substrate and products (Figure 1.b4). Co-expression or 

metabolic networks frequently incorporate quantitative data relative to expression 

correlation or stoichiometry data. However, it must be noted that the use of 

multilayered and/or weighted networks drastically increases the network analytical 

complexity. Except for mathematical modeling purposes, most studies in network 

biology, including the ones presented in this thesis, exploit undirected and 

unweighted single-layer networks.  

Network connectivity 
 

A path is the list of edges or interactions necessary to connect one node to 

another. In some cases, one edge might connect the same node itself. These self-

loops are frequently found in regulatory networks to represent positive or feedback 

relations. In the case of PPI networks, these can depict homodimer complexes. 
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However, most analysis using PPI networks discard these self-loops to retrieve a so-

called simple graph. The shortest path, as the name implies, is the minimum 

number of links one must traverse to move from one node to another (Figure 1.6C). 

The number of edges linking a node is termed degree. In directed networks we can 

further distinguish out-degree (edges leading away) and in-degree (edges incident to 

the node).  

 

A network is said to be connected if there is always a path to connect any pair 

of nodes. When a network is unconnected, some subsets of nodes get inaccessible 

in subnetworks. In these cases, the largest connected subnetwork is commonly 

referred to as main component (Figure 1.6C). On the other extreme, the network 

can be completely connected meaning all elements directly interact with all the nodes 

in the set. Complete connectivity is rare on large networks and it is most frequently 

reserved to discrete subnetworks. These special types of subnetworks are named 

cliques and in PPI networks denote the existence of tightly connected protein 

complexes or molecular machines.  
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Figure 1.6 Basic notions of network biology 
(A) The edges in the network depict (un)directed and (un)weighted interactions between distinct types of 
biomolecules, which are represented as nodes. (B) We find almost as many forms of networks as of types 
of existing biological interactions. In the most intuitive biomolecular graph, (b1) Protein-protein interaction 
(PPI) networks represent undirected physical interactions between proteins. (b2) Co-expression networks 
are undirected networks that interrelate transcripts/proteins with weighted edges according to their 
expression correlation profiles. The network can also incorporate heterogeneous molecular entities. (b3) 
Gene regulatory networks usually depict directed edges starting from the transcription factor (TF) protein to 
its target gene. (b4) Transcription regulatory networks frequently depict undirected interactions between 
RNA-binding proteins (RBPs) and their target RNAs. (b5) Metabolic networks are often represented in 
bipartite biomolecular networks that separate the enzymes from the metabolites, substrates or products. 
(C) Concepts used in network biology to describe network connectivity properties. Paths refer to discrete 
subsets of the network connecting two given nodes. In directed networks we distinguish nodes exerting 
(out-degree) or receiving interactions (in-degree), and nodes interacting with themselves (self-loops). The 
network is defined as connected when all the nodes can be reached from at least one path. Disconnected 
networks are divided into subnetworks and main component (largest subnetwork). A clique is a (sub-
)network with maximum connectivity, being that all nodes establish an interaction with each other. (D) Most 
popular centrality measures. Node degree (number of interactions) reveals node connectivity distribution 
and points to connectivity hubs. Betweenness measures the nodes present in shortest paths and reveals 
connectivity bottlenecks. Densely connected nodes are identified using clustering algorithms. 
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1.3.2  Network topology 

 

Network topology describes the arrangement of nodes interacting in the 

network and, as it will be discussed in the next section, it provides valuable insights to 

interpret biological properties. Network topology has been traditionally considered 

from a physical perspective. For instance, in the famous exercise presented by L. 

Euler in 1736, the Köningsberg seven bridges problem, network pathways are 

presented as bridges to cross a city river. In social networks, the interactions 

establish an information flow. In biological networks, many authors conceive 

connectivity as signal propagation, similar to the intercellular calcium signaling waves 

observed between astrocytes and neurons. Topology can be employed to describe 

overall network properties and infer mechanistic properties. On a local scale, network 

topology can be investigated to identify the decisive nodes for maintaining network 

architecture. 

 

The degree distribution is an archetype feature to describe the network 

topology. The degree distribution of a network is the fraction of nodes in the network 

with degree k. As it will be discussed next, it is a critical property to define node 

connectivity. Another determining network property is the clustering coefficient. The 

local clustering coefficient measures the ratio between the observed and theoretical 

maximum degree of a node. It gives an estimation of edge density around a node. In 

turn, the global clustering coefficient is a network-wide measure of the average 

clustering coefficient, and it shows the tendency of a graph to be divided into 

clusters. Lastly, a topological cluster or module is a subset of nodes that have 

more edges within the cluster than edges linking to external nodes.  

 

Centrality measures 
 

The essentiality of nodes to maintain local pathways or network connectivity 

can be inferred from the number of interactions they establish, i.e., their location in 

the network. Currently we have at our disposal a vast choice of network centrality 

measures, based on varied node essentiality assumptions. To be concise we will only 
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describe the measures used in the context of the work presented in this thesis. For a 

more detailed discussion on the topic refer to (Jalili et al., 2016).  

 

The simplest concept around centrality is that nodes with the largest degree 

(number of interactions) are central because they connect many elements. Therefore, 

the degree centrality of a node can estimate the ability of a node to spread a signal 

in its neighborhood (Figure 1.6D). Nodes with the highest degree are commonly 

referred to as connectivity hubs. On the other hand, it can be argued that a molecular 

signal would preferentially propagate through the shortest paths. Therefore, it is 

expected that the most central nodes will be involved in a large number of shortest 

paths. Betweenness centrality counts the number of shortest paths a node is 

involved in, and estimates the amount of information (as signal waves) that runs 

through the node. In turn, the nodes with highest betweenness are often regarded as 

connectivity bottlenecks. 

 

1.3.3  Biological interpretation of network topology 

 

Biological processes are exerted through the interaction of molecular 

components. From this it follows that the macromolecules directly interacting in the 

network are likely to be involved in similar processes. This assumption is commonly 

referred to as ‘guilt-by-association’ and constitutes the foundation of innumerous 

network-based methods designed for protein functional prediction. 

 

Biological networks - like many other real-world networks - reveal spontaneous 

self-organization properties, i.e., the elements display non-random local interactions 

without external instructions. In the simplest model of random graph, the edges are 

drawn between pairs of nodes uniformly with the same probability (Erdös and Rényi, 

1960). The random arrangement of edges in an Erdös-Rényi network predicts that 

the degree distribution will follow a binomial distribution (Figure 1.7A). However, 

Barabási and Albert found that in many real networks across various fields, the node 

degrees establish quite different distributions. Most of the nodes display low degree 

values, while only a few nodes presenting an extremely high degree (Barabasi and 
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Albert, 1999). These networks were named 'scale-free' because the node degree 

follows a power-law distribution (also called "scaling-law"), i.e., the probability of a 

node displaying an extremely large degree is low, independently of the network scale. 

(Figure 1.7B). In addition to the non-random degree distribution, the same authors 

observed that nodes tend to cluster in densely connected modules. At first, the two 

observations seemed to contradict each other, being that the nodes in networks with 

high clustering coefficient should present a homogeneous degree (Figure 1.7C). 

However, further topological analysis revealed that the modules are arranged in a 

hierarchical organization, with small clusters embedded in increasingly larger modules 

(Ravasz et al., 2002). The so-called hierarchical modularity, or 'modules-within-

modules' topology, was essential to reconcile in a single architecture both the high 

modularity and the scale-free degree distribution (Figure 1.7D). Most important, this 

topology became a keystone to interpret some of the elementary properties observed 

in biological systems. 
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Figure 1.7 Topology of theoretical and real biological networks 
(A) Erdös-Rényi network is the simplest model of random network in which degree probability follows a 
normal distribution and low clustering coefficient. (B) Barabási and Albert in 1999 found that most real-
world networks display a scale-free network structure in which most nodes present scarce interactions, 
and only a few nodes present extremely high degree values. The degree distribution follows a power-law 
function in which the increase rate in degree is independent of the scale. Theoretically scale-free networks 
present low clustering coefficient, however biological networks present both scale-free topology and high 
clustering coefficient. (C) Conversely, modular topology theoretically presents high clustering coefficient but 
a homogeneous degree distribution (D) Hierarchical modular topology reconciles the two properties 
observed in real biological networks. Small clusters are integrated in increasingly larger clusters. The nodes 
at the center of the "cluster-within-cluster" network present extremely high degree values and, at the same 
time, the network maintains high clustering coefficient. Network in panel D is adapted from (Ravasz et al., 
2002). 
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First, the scale-free topology drastically improves the network connectivity. 

With just a small fraction of highly connected nodes (hubs), most proteins can reach 

any node in the network in a few links. This feature is commonly referred to as 'small-

world' property. Second, modularity confers high robustness to the network, being 

that node depletion can remain restricted to certain network areas without affecting 

the overall connectivity. Furthermore, the robustness given by modular topology is 

determinant for biological systems to evolve and achieve high functional complexity 

(see early discussions on the topic by (Barabási and Oltvai, 2004; Kitano, 2004). In 

addition to the benefits this structure confers, biologists also speculate how these 

topologies might arise in nature. It is commonly accepted that gene duplication is the 

leading mechanism to generate the hierarchical modularity found in biological 

networks (Figure 1.8A). Initially, the product of a duplicated gene retains its 

properties and remains in the same interactome neighborhood, which in turn will 

increase the cluster density. Then, the low selective pressure on the duplicated 

macromolecule will enable the gene to mutate and acquire novel properties in the 

original module and, in a long evolutionary scale, even generate novel functional 

modules.  

 

Figure 1.8 Biological insights inferred from hierarchical modularity topology 
(A) Hierarchical modularity arises from gene duplication events. Gene duplication decreases selective 
pressure on the duplicated genes. The duplicated gene maintains the original interactions but can mutate 
to establish new ones. At an evolutionary scale, the duplication-mutation cycles increase network 
modularity while enabling the organization of new modules. (B) The organization in hierarchical modules 
reduces the demand for resources. Discrete modules can exert transversal functions while the 
specialization of a few nodes can link different modules to coordinate increasingly complex responses.  
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Together with the small-world property, the hierarchical organization of 

biological networks is an advantageous mechanism to coordinate complex functions 

and reduce resource demands (Figure 1.8B). Making use of the ‘guilt-by-

association’ principle, it can be assumed that each module is specialized in the 

regulation of discrete molecular functions, while the inter-cluster interactions will 

regulate the coordination of more complex responses. In this sense, the inter-cluster 

connectivity will enable the maintenance and reuse of basic biochemical tools in 

different pathways or complex processes. For instance, the transcription of a novel 

gene would only require the customization of a novel regulatory route, while the 

transcription machinery could remain invariant. From this rationale, it also translates 

that module size and position in the network can be related with its level of functional 

specialization, such that the most essential processes will be more densely 

connected and located at the center. Nonetheless, it must be remarked that this is an 

oversimplified view of biomolecular systems and, therefore, of the current notions in 

network biology. Indeed, most of the fundamental network biology principles are still 

under heated debate, with ongoing research often generating conflicting 

observations. 

 

1.3.4  Network modularity at the center of debate 

 

Network modularity is still at the center of a vivid discussion for two main 

reasons. Modularity can be defined using different types of biological information 

returning non-consistent modules. In the same way, biological information is likely to 

have biases that distort the actual shape of the modules. 

 

Clustering analysis based on node degree directly returns the archetypical 

topological clusters or modules. However, these are not the only clusters one can 

find in a biological network. For instance, based on the ‘guilt-by-association’ principle, 

proteins involved in the same biological process will tend to interact more densely and 

thus form functional modules. These modules are usually identified exploiting GO 

functional enrichment strategies (discussed previously in Section 1.2.4) to select 
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groups of interactors. The same applies for disease modules in which the products 

of DGs tend to densely interact. 

 

The second point of discussion is that the biological relevance of topological 

modularity might be overestimated. The high clustering coefficient observed in 

seminal studies of network biology might be a topological distortion due to the 

technical biases in PPI detection towards stable interactions (Acuner Ozbabacan et 

al., 2011). It remains nonetheless evident that molecular machines and stable 

macromolecular protein complexes are essential for cell biochemical and 

biomechanical functions (Ghadie and Xia, 2022). However, we might be 

overestimating their relevance when interpreting physiological outcomes. In fact, 

current lines of investigation argue that transient interactions (and so, more sparsely 

connected elements) are indeed central to coordinate even the most primordial 

functions. Of note, during the past decades, prior to the standardization of high-

throughput methods, protein interaction studies primarily focused on proteins with 

anticipated clinical interest (Skinnider et al., 2018). Thus, PPI networks originally grew 

around DGs, placing them at the center. Furthermore, researchers have preferentially 

studied the closest neighborhood of DGs and this might have artificially exaggerated 

the DG clustering into modules. 

 

Protein multifunctionality and module overlap 
 

At this point, it is imperative to highlight a serious limitation when evaluating the 

topology of PPI networks: they are static representations of cellular dynamic 

processes. As matter of fact, PPI networks represent the likelihood of a certain 

physical interaction to happen. However, they cannot inform which is the collection of 

interactions happening at a specific location and time. To this limitation, it is important 

to add the fact that the body of evidence collected so far soundly supports the view 

that most proteins are multifunctional.  

 

This notion is intuitive when considering that biological functions are not 

exerted by single molecules but, in contrast, are collective properties of the system. 

As we have stated in the previous subsection, biological systems will tend to minimize 
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resource efforts and so the combination of different proteins from the same proteome 

set can give rise to different biological processes (Figure 1.8B). From this it translates 

that proteins can be simultaneously involved in several functional modules and, in 

turn, that the modules will tend to overlap. This observation is particularly determinant 

when using canonical clustering algorithms because, by definition, they are designed 

to identify isolated non-overlapping clusters. While it is true that substantial efforts 

have been made to adapt clustering algorithms to current biological challenges, it is 

no less true that the main goal of these algorithms is still to discretize protein 

connectivity and therefore, that they may still draw biologically incomplete conclusions 

(Alcalá-Corona et al., 2021). In fact, it is very likely that topological, functional and 

disease modules represent different facets of the same biological reality. Thus, this 

discussion is fundamental to correctly interpret the self-organization patterns 

observed in biomolecular networks. Furthermore, in practical terms, these notions 

directly shape the conceptual design of functional and DG prediction methods. 

 

1.3.5  Network medicine and network biology applications 

 

Diseases are considered to be the phenotypic manifestation of cell 

homeostasis perturbations, which in turn are triggered by molecular alterations 

disrupting the healthy functional routes. The identification of network vulnerabilities 

and the understanding of node inter-dependencies is prime to correctly predict the 

deleterious outcomes of hypothetical perturbations in the network. On this basis, we 

can design strategies that exploit network topology to predict DGs, biomarkers and 

drug targets (network medicine applications reviewed by (Lee and Loscalzo, 2019; 

Silverman et al., 2020)). 

 

Network-based DG prioritization methods 
 

Although still an open debate, it is commonly accepted that DGs often lie in a 

close neighborhood in the network (Goh et al., 2007; Menche et al., 2015a). Thus, 

the rationale to design DG prioritization methods is quite similar to the approaches 

aiming at predicting gene product functions. In particular, in the case of DG 
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prioritization methods, we find an extensive range of strategies among which three 

main types can be highlighted (Figure 1.9). 

 
Figure 1.9 Popular network-based gene prioritization strategies 

Most DG prioritization methods 
are founded on the guilt-by-
association principle and so aim 
to prioritize the nodes closest to 
known DGs. The proximity of 
nodes to DGs can be interpreted 
from varying assumptions. (A) 
Linkage-based methods exploit 
centrality measures and prioritize 
nodes central to reach DGs. (B) 
Modularity-based methods 
assume that topological, 

functional and disease modules overlap and so apply clustering methods to identify modules around DGs. 
(C) Diffusion-based methods consider that the impact of a gene alteration can be modeled as a finite signal 
propagation, similarly to a liquid diffusing in a pipe system. Diffusion-based methods model the propagation 
of the alteration from DGs to prioritize the nodes most frequently found within the impact area. 

 

Linkage-based methods rely on centrality measures to identify direct 

interactors and critical connectors of previously known DGs (Figure 1.9A). In fact, 

the S2B method presented in Chapter 3 is a DG prioritization strategy based on 

betweenness centrality. Its novelty lies in that, instead of prioritizing DGs of a single 

disease, it aims at identifying common elements associated to a pair of diseases. 

Modularity-based methods assume there is a high correlation between topological, 

functional and disease modules, and so rely on clustering algorithms to identify 

disease modules around known DGs (Figure 1.9B). For instance, DIAMOnD applies 

the hypergeometric test to detect candidates significantly enriched in interactions with 

known DGs (Ghiassian et al., 2015). Lastly, diffusion-based methods simulate how 

DGs can propagate the alteration through the network (Figure 1.9C). These methods 

assume the signal has a finite propagation throughout a network, much as the 

diffusion of a volume of liquid in a pipe system. Thus, signal diffusion can be used to 

quantitatively estimate network connectivity and the proximity of proteins to certain 

source of alteration. We find many adaptations to diffusion analysis methods, 

depending on the biological rationale (reviewed in (Di Nanni et al., 2020)). One 

popular diffusion-based algorithm is commonly known as random walker. It 

simulates the random walk of a walker through the links of a network. The starting 

point of the walk is a known DG and the walker is enabled to walk a certain number 

Modularity Diffusion Linkage 
A B C 
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of links. After several simulated walks, the nodes more visited by the walker are 

considered more likely to be involved in the disease.  

 

Network vulnerability in MND  
 

From the modular organization of biological networks, it translates that the 

disturbance of a peripheral node or module should have a restricted impact on overall 

connectivity. On the opposite scenario, the perturbation of bottlenecks or hubs can 

trigger a cascade of failures with catastrophic consequences for cell homeostasis. 

Both from the evolutionary and functional perspective, most central modules will be 

implicated in the primordial and vital biological processes. On this basis, it might be 

intuitive to think that DGs preferentially locate at the most vulnerable network points, 

however, this assumption is likely excessive. As Barabasi and colleagues pointed out 

in their seminal work introducing network medicine, the removal of central nodes 

would have such catastrophic impact that the individual would not reach the last 

developmental stages preceding childbirth (Barabási et al., 2011). This notion is even 

more conspicuous for complex diseases with adult-onset and degenerative 

manifestations. At least in these scenarios, it is more likely that DGs are preferentially 

located in the most specialized functional modules at the network periphery. 

However, it is surprising to find that many genes associated with MND are particularly 

involved in essential processes for cellular homeostasis. For instance, as discussed in 

Section 1.1.2, the most common type of SMA, 5q-SMA, is caused by mutations in 

the SMN gene, which is a critical chaperone for spliceosome assembly, among other 

things. Similarly, numerous proteins coded by ALS DGs, such as FUS or TDP-43 are 

directly implicated in RNA biogenesis and transport. So, an outstanding research 

question is how can these seemingly contradictory observations be reconciled.  
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1.4  Thesis objectives and rationale 
 

The main goal of this thesis is to explore network-based approaches to 

unveil the molecular events governing MNDs. As discussed throughout the 

introduction, MNDs encompass a spectrum of complex diseases with multigenic 

etiology. Although we currently have at our disposal an extensive list of genes related 

to MNDs, the community still faces many unanswered questions. This thesis focuses 

in exploring two compelling observations, namely: 

 

• How do MND phenotypes arise from the alteration of distinct pathways?  

• How can the alteration of ubiquitously expressed proteins distinctively target 
specific cell types as MNs?  

 

On one hand, MND patients show mutations in genes involved in diverse cell 

activities but intriguingly, these alterations are manifested with similar clinical 

hallmarks. This implies that different molecular alterations can converge towards the 

disturbance of similar molecular modules. On the other hand, the different sensitivity 

of human tissues towards mutations in MN DGs indicates that the same protein can 

exert distinct functions depending on the specific cellular environment. These two 

observations are patent evidence of the complex protein interaction networks 

underlying cellular organization. In order to attempt to contribute to answering to 

these questions, the thesis work was structured into the following specific aims: 

 

Chapter 2: Identification of network mechanisms underlying tissue functional 
diversification, and characterization of the network properties of functions prone to 
accumulate DGs in tissue- and disease-specific contexts. 
 

Chapter 3: Identification of common molecular players between ALS and SMA 
predicted disease modules in human protein-protein interaction networks. 
 

Chapter 4: Identification of common molecular players in Drosophila knockdown 
models  of MND gene orthologs generated by a collaborative consortium led by the 
host laboratory. 
 

Chapter 5: Integration of the knowledge retrieved from the human and Drosophila 
predictions to propose a unifying hypothesis of MND pathomechanisms. 
 

Chapter 6: Discussion and final remarks on the investigation conducted in the thesis. 
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2.1  Abstract 
 

Protein-protein interactions (PPI) play an essential role in the biological 

processes that occur in the cell. Therefore, the dissection of PPI networks becomes 

decisive to model functional coordination and predict pathological de-regulation. 

Cellular networks are dynamic and proteins display varying roles depending on the 

tissue-interactomic context. Thus, the use of centrality measures in individual proteins 

fall short to dissect the functional properties of the cell. For this reason, there is a need 

for more comprehensive, relational, and context-specific ways to analyze the multiple 

actions of proteins in different cells and identify specific functional assemblies within 

global biomolecular networks. Under this framework, we define Biological Interacting 

units (BioInt-U) as groups of proteins that interact physically and are enriched in a 

common Gene Ontology (GO). A search strategy was applied on 33 tissue-specific 

(TS) PPI networks to generate BioInt libraries associated with each particular human 

tissue. The cross-tissue comparison showed that housekeeping assemblies 

incorporate different proteins and exhibit distinct network properties depending on the 

tissue. Furthermore, disease genes (DGs) of tissue-associated pathologies 

preferentially accumulate in units in the expected tissues, which in turn were more 

central in the TS networks. Overall, the study reveals a tissue-specific functional 

diversification based on the identification of specific protein units and suggests 

vulnerabilities specific of each tissue network, which can be applied to refine protein-

disease association methods. 
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2.2  Introduction 
 

Cell physiology, defined as the ability to exert biological functions, emerges from 

the dynamic interactions in protein networks. Likewise, pathological manifestations 

arise from genetic alterations that result in protein interaction failure and network 

malfunction (Barabási et al., 2011; Wang et al., 2012; Zhong et al., 2009). While great 

progress has been made towards the characterization of protein interactions (PPIs) 

and disease genes (DGs) (Low et al., 2021; Piñero et al., 2020), the relation between 

protein network connectivity and phenotypic manifestation is still poorly understood. 

The majority of diseases with restricted histological hallmarks are known to be 

triggered by DGs with wide tissue expression (Hekselman and Yeger-Lotem, 2020). In 

that sense it still an open debate how mutations in housekeeping (ubiquitously 

expressed) genes can distinctively affect to the physiology only on certain tissues. 

 

One fundamental reason for this knowledge gap is that biological networks are 

complex. Protein networks include large numbers of participating elements and these 

hold a large range of interchangeable partners. For instance, the complete human 

protein network available in the APID repository (Alonso-Lopez et al., 2016; Alonso-

López et al., 2019) included in April 2021 more than 17,000 proteins, with each one 

being able to interact with more than 30 partners on average 

(http://bioinfow.dep.usal.es/apid/). In fact, the combinatorial range of PPIs is an 

eminent force for tissue functional diversification (Deeds et al., 2012; Greene et al., 

2015). The same protein may establish different interactions and exert varied functional 

roles depending on the context (Espinosa-Cantú et al., 2020). As a consequence, the 

proteins will be localized at different positions in the network depending on their active 

functional partners in the considered tissues. On this basis, one could argue the same 

protein might acquire varying topological properties across TS-networks that 

distinctively resonate in TS-physiology. Indeed, DGs do not locate at random positions 

in the PPI networks but tend to display more TS-PPI in the disease tissue than in the 

unaffected tissues (Barshir et al., 2014). This observation suggests the idea that 

different TS-network may have distinct vulnerable spots, and strongly supports that the 

characterization of topological properties underlying tissue functional diversity might be 

critical to understand the emergence of TS patho-phenotypes. 
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Protein-protein interactions are a strong indicative of functional collaboration. 

Network connectivity measures, such as clustering coefficient, degree and 

betweenness centrality, are well-established predictors of protein essentiality and so of 

potential vulnerabilities in cell physiology (Barabási et al., 2011). Based on these 

notions, a variety of PPI network-based strategies have been proposed to identify 

densely connected modules, recently reviewed by (C. Liu et al., 2020). While these 

methods are valuable to predict functional collaboration and DG candidates, they are 

not suitable to characterize their topological context. 

 

In this study we define and characterize Biological Interacting units (referred to 

as: BioInt-U), identified as biological modules found in PPI networks using tissue-

specific mapping and topological interactomic analysis. In this way, BioInt units are 

found using a network-based framework to define topologically unbiased functional 

PPI consortia in multiple tissue-specific (TS) interactomes. These units represent an 

intermediate level of PPI functional coordination in TS networks, which allow the 

characterization of topological properties of normal and disease-targeted cell 

processes. A search for these BioInt units was performed within an extensive catalog 

of human tissues yielding 33 TS-BioInt libraries. Disease impact was assessed by 

mapping known disease genes (DGs) in BioInt libraries. The cross-tissue and cross-

disease mapping revealed distinctive topological properties on the BioInt units, 

suggesting new explanatory insights into the occurrence of pathologies affecting 

specific tissues. 

 

The benefits of using BioInt-U are illustrated, as an example study, by its 

integration with publicly available gene expression profiles (RNA-seq) derived from 

patients affected by two diseases: psoriasis and pulmonary fibrosis. Our analysis 

revealed that proteins corresponding to differentially expressed transcripts/genes (DEg) 

collaborate in the same BioInt units in expected disease tissues. Furthermore, these 

BioInt units were involved in biological processes previously considered critical in the 

development of these diseases (fibrosis and psoriasis), providing new potential 

research targets or candidate proteins to be modulated in these diseases.  
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2.3  Methods 
 

2.3.1 Computational pipeline to define BioInt units  

 
Reconstruction of TS networks. RNA-seq datasets representing 33 major 

tissues and organs were retrieved from Uhlén and colleagues work (Uhlén et al., 

2015). The datasets were filtered to only evaluate transcripts expressed above 1 FPKM 

(Fragments Per Kilobase of transcript per Million). The dataset was TMM-normalized 

(Trimmed mean of M values) using the limma R package (Ritchie et al., 2015). 

Biological replicates were combined calculating the average transcript expression. 

Next, human physical PPI data reported at least in two experiments was retrieved from 

the APID repository in April 2021 (Alonso-López et al., 2019). The tissue-naive PPI 

network was filtered to create a TS network including only interactions between 

proteins coded by transcripts expressed in each TS transcriptome. The TS networks 

were simplified to remove self-loops and isolated proteins using the igraph R package 

(Csárdi and Nepusz, 2006).  

 

Functional enrichment of TS networks. The GOfuncR R package was used 

to functionally characterize TS networks in comparison to the unspecific network using 

Gene Ontology Biological Process (GO-BP), hyper-geometric test, FDR = 0.1 on 500 

randomizations (Grote, 2020). Functional enrichment was simplified into functional 

groups by collapsing terms with more than 0.9 Jaccard's similarity coefficient, defined 

as the number of common elements between two sets, divided by the union set size. 

When GO-BPs are collapsed, the new functional group functional description with 

fewest characters.  

 

Generation of TS-BioInt libraries The functional enrichment of TS-networks 

was used to identify the BioInt units, which consist of groups of proteins physically 

interacting and annotated under the same enriched GO-BP term. The inconsistencies 

across high-throughput PPI data and the constant PPI data growth in multiple 

repositories suggest the human interactomic data is still far from complete. Knowing 

this, we enabled BioInt units to be formed by non-connected subnetworks. The 
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isolated clusters were discarded only when the main component (largest subnetwork) 

represented more than 90% of the total BioInt unit. On the other hand, proteins can 

display transient and varied PPIs. Additionally, most proteins are multifunctional and 

are frequently annotated with several GO-BP terms. In order to recapitulate protein 

multifunctionality and the network dynamics, we enabled proteins to be involved in 

several units simultaneously. The BioInt units were classified in 28 functional categories 

by performing a direct text mining of key words found in the description of functional 

units. The list of key terms is available at Supplementary Data 2.2. From the total 28, 

we selected the 22 functional categories associated with sufficient BioInt units. The 

network topological analysis was focused on betweenness, degree and clustering 

coefficient measures that were evaluated using the igraph R package (Csárdi and 

Nepusz, 2006). 

2.3.2  CORUM protein complex intersection 

The molecular machines described at the CORUM repository (Giurgiu et al., 

2019) were used as gold standard to evaluate the ability of BioInt-U method to identify 

already established protein functional complexes. Curated 'core' complexes were 

retrieved from CORUM database in March 2021. The dataset was filtered to only 

evaluate CORUM complexes including at least 3 distinct proteins. In order to assess 

the protein overlap between CORUM and BioInt-U, we first combined TS BioInt 

libraries into a unified version. BioInt units annotated to the same GO-BP term along 

different tissues were collapsed to include all TS proteins. The full description of unified 

and TS BioInt units is available in Supplementary Data 2.4. The average size of the 

BioInt units was >17 times larger than CORUM protein complexes. Due to the wide 

difference in size, the overlap analysis between CORUM complexes and BioInt units 

was performed applying Simpson's similarity (SS) coefficient, defined as the number of 

common elements between two sets, divided by the minimum set size (complete 

analysis available in Supplementary Data 2.3). 

2.3.3  Disease-gene association 

Disease gene (DG) associations were retrieved from the DisGeNET repository in 

December 2020 (Piñero et al., 2020). Disease references annotated as 'Symptom', 

'Finding, 'Injury or poisoning' and 'Individual Behavior' were discarded. DGs with a 
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confidence score lower than 0.1 were discarded. Only diseases including 10 to 200 

genes were evaluated. Similar to functional enrichment, disease list was simplified by 

collapsing terms with more than 0.9 Jaccard's similarity coefficient. When diseases are 

collapsed, the new disease group includes all genes associated to each pathology but 

is assigned to the disease description with fewest characters. In order to evaluate the 

performance of the BioInt-U framework, we created a list of 463 diseases with 11 

presumable tissue-specific phenotypes. To generate the TS disease list, we used the 

same text mining approach as for the functional classification of BioInt units. The DG 

list and disease classification is available in Supplementary Data 2.5. 

 

2.3.4  Gene expression profiles from public repositories 

Two independent RNA-Seq transcriptomic profiles characterizing gene 

expression changes in samples derived from patients affected with psoriasis 

(GSE166388) and idiophatic pulmonary fibrosis (GSE24206) were downloaded from 

the Gene Expression OmniBus (Barrett et al., 2013). Differential gene expression 

analysis was performed using the GEO2R tool available through the GEO platform. 

Transcripts with fold change (FC) values of |log2FC|>2 and |log2FC|>1.5 and p-value 

<0.05 were selected as differentially expressed genes (DEg) in fibrosis and psoriasis 

datasets, respectively. The DEg datasets were mapped in the BioInt units to calculate 

the % of DEg by BioInt unit. Then, the BioInt units including DEg above the 3rd Quartile 

(0.9% and 1.3%) were considered the most potentially altered functional processes in 

fibrosis and psoriasis profiles, respectively. 

BioInt-U method and output availability 

All the analyses presented in this work were performed in R studio environment 

and figures were generated using ggplot2 and ComplexHeatmap R packages (Gu et 

al., 2016; R Core Team, 2020; RStudio Team, 2016; Wickham, 2016). The framework 

can be employed for other species and only requires PPI and TS transcriptomic data. 

The R functions necessary to generate additional BioInt units are available in Github 

repository https://github.com/GamaPintoLab/BioInt-U. 

  



Chapter 2: Biological Interacting Units 

M.L. García-Vaquero, 2022 62 

2.4  Results 

2.4.1  Framework for dissecting functionally meaningful interactions: 
BioInt-U 

The BioInt-U method was designed to identify groups of interacting proteins 

collaborating in the same biological processes (Figure 2.1A), i.e., biologically 

interacting modules hereafter referred to as BioInt units. We first (i) reconstructed 33 

tissue-specific (TS) networks by mapping TS transcripts/genes identified from TS RNA-

seq profiles in a tissue-naive PPI network. Next (ii) the TS networks were functionally 

characterized by evaluating the Gene Ontology Biological Process (GO-BP) annotated 

in the network; and (iii) by applying functional enrichment analysis of GO-BP terms. The 

enriched GO-BP terms were then used to dissect BioInt units. The BioInt units did only 

retain the proteins enriched in the GO-BP that, at the same time were physically 

interacting in the TS network (iv) (Figure 2.1A). Assuming that some GO terms are very 

general and define too large and fuzzy functional groups, which are quite 

uninformative, we only considered BioInt units including less than 200 proteins. The 

use of BioInt-U in the TS networks returned 33 independent TS functional libraries, 

each including between 200 and 350 BioInt units (256 on average) (Figure 2.1B), each 

including a mean of 103 proteins (Figure 2.1C).  
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Figure 2.1 BioInt-U framework performance overview. 
(A) Schematic illustration of BioInt-U framework. (i) First, we reconstruct tissue-specific (TS) protein-
interaction (PPI) network by mapping TS RNA-seq profiles from 33 human tissue samples to tissue-naive PPI 
data. (ii) TS networks are functionally annotated using Gene-Ontology Biological Process (GO-BP) terms. (iii) 
TS networks are functionally enriched to keep only functions characteristic of each tissue compared to 
tissue-naive network. (iv) BioInt units are generated from the lists of enriched functions in each tissue 
context. The BioInt units are made by groups of proteins physically interacting and annotated by the same 
enriched GO-BP term. Only BioInt units including less than 200 proteins are selected to construct the 33 TS 
BioInt libraries. (B) Bar plot summarizing total number of BioInt units identified in each TS library. (C) Density 
plot describing the number of proteins incorporated in each BioInt unit in each TS library. (D) Line plot 
describing the transcript/gene recovery along the framework. X-axis points represent three of the steps 
defined in the framework (in panel A): (i) total transcripts/genes in TS RNA-Seq profiles; (ii) proteins in TS 
networks annotated with at least one GO-BP; and (iv) final number of proteins in the selected BioInt units. 
Step (ii) and (iii) returned very similar protein coverage (not shown for clarity). Colored bars and lines in panel 
B, C and D point to six illustrative specific libraries from tissues: testis, bone-marrow, spleen, lymph-node, 
muscle and brain. (E) Bar plot summarizing BioInt-U performance at identifying tissue-consistent BioInt units 
in three representative tissues: immune, brain, muscle. TP: Number of functions correctly annotated (ii), 
enriched (iii) or selected (iv) in the expected tissues. FP: Number of tissue-specific functions assigned to 
other than the expected tissues. 
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2.4.2  TS BioInt libraries recap functional landscape of TS 
transcriptomes 

An ultimate goal in constructing BioInt libraries is to dissect how the interactome 

is coordinated into TS functional consortia. On this basis, we first corroborated that TS 

BioInt libraries recapitulate the functional landscape of TS transcriptomes resembling 

well-established biological properties. 

 

We assessed TS transcriptome coverage at each step of the framework. A 

tissue-naive human PPI network retrieved from APID (Alonso-López et al., 2019) was 

found to incorporate > 90% of genes identified in each TS transcriptome (Uhlén et al., 

2015) (see (i) in Figure 2.1D). BioInt units are generated from Gene Ontology 

annotations, so the performance directly relies on the characterization state of the 

proteins. We found that > 80% of proteins incorporated in TS networks are functionally 

annotated (see (ii) in Figure 2.1D). Of note, the statistical functional enrichment did not 

affected TS transcriptome coverage (step (iii) omitted in Figure 2.1D).  

 

In order to minimize shallow functional terms, only BioInt units with less than 200 

proteins were selected for the BioInt libraries. This filtering step discarded ~50% of the 

enriched GO-BP terms and reduced the TS transcriptome coverage down to 40% (see 

(iv) in Figure 2.1D). Supplementary Data 2.1 summarizes the properties of each 

tissue set in the successive steps. Knowing that vague and general terms of GO-BP 

tend to be associated with many genes, it is likely that large BioInt units, including 

numerous genes, are not functionally very informative. Therefore, we interpret that the 

genes/proteins we missed by filtering by size were only annotated with shallow terms 

(i.e., superficial in the Gene Ontology and rather general), and so are assigned to still 

poorly defined functions. 

 

Despite the sharp decrease, we confirmed in the forthcoming analysis that the 

filtering of large BioInt units did not exclude tissue-specific annotations. To assess the 

ability of BioInt-U to characterize tissue-specific (TS) and housekeeping (HK) 

processes, we classified the BioInt units into 22 broad "functional categories" 

(Supplementary Data 2.2). For three representative tissues, we calculated the 

number of these "functional categories" correctly enriched to the expected tissue 
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(considered as true positive cases, TP) and the number of tissue-specific functions 

assigned to other than the expected tissues (false positive cases, FP) (Figure 2.1E). 

We confirmed that the functional enrichment was crucial to discard FP annotations, 

especially in brain and muscle libraries (Figure 2.1E, blue bars). Moreover, we 

confirmed that size filtering does not affect the selection of tissue-specific BioInt units 

(Figure 2.1E, red bars). 

 

2.4.3  BioInt units represent functional assemblies beyond molecular 
machines 

Molecular machines are commonly defined as "assemblies of molecular 

components that are designed to perform machine-like movements" (Balzani et al., 

2000). The main components of many molecular machines are proteins/polypeptides, 

such as the proteasome, spliceosome, respiratory chain complexes, etc. Being that 

molecular machines lie at the center of every biological process, we expect BioInt units 

to incorporate them. To address this issue, we took advantage from the CORUM 

repository as gold standard of curated molecular machines (Giurgiu et al., 2019), and 

evaluated the degree of overlap with TS BioInt libraries. We first confirmed that ~90% 

of proteins involved in molecular machines are actually mapped in TS PPI networks 

and functionally annotated in GO-BPs (Figure 2.2A). CORUM protein coverage 

dropped when filtering-out BioInt units with more than 200 proteins, indicating that a 

fraction of CORUM-annotated molecular machines were only incorporated in the 

largest BioInt units. It is noteworthy though that the decrease in coverage was less 

pronounced than when considering overall transcripts possibly indicating that CORUM 

complexes are also incorporated in smaller BioInt units (Figure 2.2B). As expected, 

due to their central roles in cellular activity, we observed that proteins involved in 

molecular machines tend to be more ubiquitously expressed than proteins not 

identified as being part of any molecular machine in the CORUM repository (Wilcoxon 

Rank Sum test, p-value < 10-4, Figure 2.2C). 
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Figure 2.2 Mapping of molecular machines from CORUM repository to BioInt units. 
Line plots describing mapping % of transcripts and proteins retrieved from each TS-RNA-Seq profile (A) or 
CORUM repository (B), in the TS PPI networks annotated with at least one GO-BP, and in the selected BioInt 
units. (C) Violin plot comparing the tissue expression distribution of proteins identified in CORUM complexes 
(blue) and transcripts only identified in TS-networks (red). Wilcoxon Rank Sum test, p-value <10-16. (D) 
Staked barplot summarizing the maximum Simpson's similarity (SS) index found when mapping BioInt units 
to CORUM complexes. Box plots describing the % (E) and total number (F) of BioInt units sharing proteins - 
i.e., overlap - with other BioInt units (BiU-BiU) and CORUM complexes (BiU-CO) at increasing SS index 
intervals. Wilcoxon Rank Sum test; p-value **** <0.0005 and * <0.05. (G) Violin plots comparing SS 
distribution between BioInt units and CORUM complexes. The distributions do not include pair comparisons 
with no overlap (SS=0). (H) Heatmap representing SS index between an illustrative subset of BioInt and 
CORUM complexes (BiU-CO). (I) Schematic picture of the predominant types of overlap found in the 
comparisons between BioInt units (BiU-BiU) and between units and complexes (BiU-CO). 
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In order to assess the protein overlap between BioInt units and CORUM 

complexes (BiU-CO pairs), we first combined the TS BioInt units into a unified library. 

The combination of all BioInt units identified along the 33 tissues returned a unified 

Bioint library consisting on 728 unique BioInt units including 7765 proteins overall. Due 

to the size imbalance between BioInt and CORUM complexes, the pair-wise overlap 

was addressed using Simpson's similarity (SS) index (see Methods). For each BioInt 

unit, we calculated the maximum SS index found with at least one CORUM complex 

(Figure 2.2D). Next, we compared the percentage and total number of overlapping 

complexes at increasing SS index intervals (Figure 2.2E,F). Lastly, we evaluated the 

SS index distribution along all pairs of complexes sharing at least one protein (Figure 

2.2G). We first confirmed that all BioInt units partially intersected with numerous 

molecular machines (SS index > 0.25, Figures 2.2D,E). Further, we found that more 

than half of the BioInt units can partially incorporate up to 50 molecular machines (SS 

index 0.25-0.50 Figure 2.2F). Most notably, more than 60% of BioInt units displayed a 

SS index higher than 0.75 with at least 5 CORUM complexes in average (Figures 

2.2D,E). Figure 2.2H illustrates several examples of BioInt units incorporating 

complete or close to complete molecular machines. We found that numerous CORUM 

molecular machines incorporated into single BioInt units were related to DNA and RNA 

metabolism. This is in good agreement with the fact that ribonucleic acid biogenesis 

and processing is exerted through successive biochemical processes that require the 

collaboration of multiple molecular machines. Overall, these results indicate that BioInt 

units can recapitulate how multiple molecular machines collaborate in more complex 

biological processes. Supplementary Data 2.3 provides the full results of the pairwise 

SS analysis between BioInt units and CORUM complexes in human. Supplementary 

Data 2.4 provides all properties and relevant information regarding the BioInt units 

generated from the analysis. 
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BioInt units are not redundant and recapitulate protein multifunctionality 
 

We also addressed the overlap between BioInt units (BiU-BiU pairs) to evaluate 

functional redundancy and protein multifunctionality. We found that almost every BioInt 

unit slightly overlapped with at least one additional BioInt unit (SS index < 0.25, Figure 

2.2E). Furthermore, ~57% out of the > 106 possible BiU-BiU combinations shared at 

least one protein indicating that BioInt units frequently overlap (Figure 2.2G). 

Notwithstanding, the SS index was consistently lower than the one observed for BiU-

CO pairs. Likewise, the number of complexes overlapping with a SS index > 0.25 was 

significantly lower than when considering the BiU-CO overlap (Wilcoxon Rank Sum 

test, Figure 2.2E). The low but consistent overlap suggests that most proteins tend to 

be involved in varied functional consortia. Thus, the overlap analysis confirmed that 

BioInt libraries are not exceedingly redundant but rather recapitulate protein 

multifunctionality. Conversely, BioInt units incorporate complete or close to complete 

molecular machines characterizing the molecular activities at the center of biological 

processes (schematic interpretation in Figure 2.2I). 

 

2.4.4  The functional landscape of tissue-specific BioInt libraries is 
consistent with the characteristic functions of each tissue 

 
We next investigated whether TS BioInt libraries recapitulate the functional 

landscape expected for each tissue. To do so, the BioInt units incorporated in each TS 

BioInt library were first assigned to 22 broad functional groups (see Methods). Then, 

we evaluated the distribution of these 22 functional classes along the 33 reference 

tissues. The analysis corroborated that TS processes such as muscle or neuron-

related processes are distinctively enriched in the expected tissues (hyper-geometric 

test, p-value <0.05, Figure 2.3A). This is shown, for example, for: neuron and brain, 

mitosis and testis, or muscle and heart. Conversely, transversal processes as signaling, 

DNA, RNA or protein metabolism were consistently identified across all the tissues, 

corroborating that these BioInt units are actually reflecting housekeeping (HK) 

functions. Notwithstanding, multiple HK functional classes were significantly enriched in 

particular organs. Direct inspection of these cases, however, reveals striking 
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agreement with known organ and tissue biology. Examples include the enrichment of 

signaling-related BioInt units in lung tissue, lipid metabolism processes enrichment in 

liver, or mitosis overrepresentation in testis. This result is in conformity with the general 

conception that different tissues rely more heavily on certain basal processes than 

others. Furthermore, the analysis revealed that the function types considered as HK 

can be divided in two subgroups based on their distribution across the tissues (Figure 

2.3B). The majority of BioInt units related to RNA, mitochondria, organelle trafficking, 

protein metabolism and localization were essentially detected across all tissues (blue 

plots in Figure 2.3B). In contrast, many functional groups as signaling, mitosis or 

cytoskeleton incorporated BioInt units with mixed expression patterns (purple plots in 

Figure 2.3B).  
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Figure 2.3 Analysis and comparison of functional and topological features of BioInt units with 
distinct tissue distributions 
(A) Heatmap representing the percentage of BioInt units associated to each functional category (columns) 
along the tissues. BioInt units were classified into 22 general functional categories by text mining key words 
in the BioInt unit description (see Methods). Red dots point statistically significant enrichments, hyper-
geometric test; p-value <0.05. Bottom column color divides function classes according to density distribution 
in panel B. (B) Density plots describing the tissue distribution of BioInt units assigned to each functional 
category. Density plots are filled in red, blue and purple to point functional classes with tissue enriched (TE), 
housekeeping (HK) and mixed HK/TE expression, respectively. (C) Box plot comparing tissue distribution of 
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transcripts and BioInt units. Colored lines separate the TE and HK units identified in less than 5 tissues or in 
more than 28 tissues, respectively. (D) Density plot describing the percentage of common proteins identified 
for the same HK unit along the tissues. Vertical lines highlight the two classes of BioInt units according to 
protein expression heterogeneity. (E) Heatmap representing the statistical association between the type of 
PPI and their location along BioInt units (illustrated in top box). Color scale represents the Pearson's 
residuals obtained from Chi2 test p-value <10-4. (F) Box plots comparing the network properties of HK units 
(HKu) and TE units (TEu) (illustrated in right box). Left to right: Percentage of UB proteins in each BioInt unit 
and total proteins in the main component (largest connected subnetwork) of the unit. Average protein 
degree, average protein global clustering coefficient in TS-network and number of subnetworks by BioInt 
unit. Wilcoxon Rank Sum test; p-value **** <10-4 and * <0.05. 
 

2.4.5  Dissection of BioInt units brings insight into the mechanisms 

underlying tissue functional diversity: Ubiquitous (UB) and non-
ubiquitous proteins collaborate in HK and TE functions 

 
Excluding the transcriptomic profiles of sexual tissues, we found that a large 

fraction of the gene transcripts (9,686 expressed genes) to be ubiquitously (UB) 

expressed across the TS transcriptomes. However, the distribution of BioInt units 

across tissues drew a notably distinct pattern when compared to transcript expression 

(Figure 2.3C). We found 357 BioInt units annotated in less than 5 tissues (hereafter-

called tissue enriched units, TEu) and 122 units annotated in more than 28 tissues 

(housekeeping units, HKu). While all TS networks incorporated ~70% of UB proteins 

on average, the percentage of housekeeping units dropped to 17.3% (Figure 2.3C). 

These trends are likely justified by the observation that both HKu and TEu incorporated 

a mixed composite of UB and nonUB proteins (Figure 2.3F). In particular, we found 

that TE units incorporated a large percentage of UB proteins and HK BioInt units also 

included a small fraction of nonUB proteins.  

Being that different proteins can exert similar biochemical activities, we 

hypothesized the same HK functional unit might incorporate varying proteins 

depending on the tissue of context. Additionally, we sought to assess whether the 

percentage of protein variability in HKu could be associated to their functional roles. 

We calculated the heterogeneity of each HKu as the percentage of proteins found in 

common along all tissues (Figure 2.3D). Protein variability analysis generated a 

bimodal density plot in which two major groups can be distinguished: i) heterogeneous 

HKu with more than 20% of protein variability and ii) highly consistent HKu with tissue 

variability below 10%. Similarly when evaluating BioInt unit distribution profile across 

tissues (Figure 2.3B), we found that heterogeneous HK units are more frequently 
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associated to functional classes with mixed expression patterns as signaling, mitosis or 

stress-related processes; while monotonous HK units are distinctively related to RNA, 

DNA or protein metabolism and localization. Nonetheless, these trends might indicate 

that functions considered as "mixed HK" are less characterized, at PPI and/or Gene 

Ontology level, than functions classified as consistent HK units. Either way, these 

results support the notions that, ubiquitous and non-ubiquitous proteins collaborate in 

TE or HK processes and some HK functions could acquire additional relevance in 

certain tissues.  

 

2.4.6  Network characterization of ubiquitous and tissue-specific 
BioInt units 

Protein localization at the global network can provide valuable information on the 

coding-gene evolutionary history and current functional essentiality. At the same time, 

the PPI location in the BioInt units can also indicate whether the protein interactions 

play a core role in a given function or, rather, coordinate complex functional 

mechanisms. On this basis, we evaluated the position of HK and TE units in the TS 

networks using standard network connectivity measures (right box in Figure 2.3F). We 

found that HK units frequently incorporated more proteins and these predominantly 

located in the main component (i.e., the largest connected subnetwork of the BioInt 

unit, Figure 2.3F). Moreover, the proteins collaborating in the HK units displayed 

significantly larger average degree (lager number of interactions per protein) and global 

clustering coefficients (larger interaction density in the protein neighborhood), indicating 

that HK units hold central positions in TS networks (with a significant difference 

according to the Wilcoxon tests, Figure 2.3F).  

To further explore the biological implications of the collaboration between UB 

and nonUB proteins, we addressed the frequency of homotypic (UB-UB or nonUB-

nonUB) and heterotypic (UB-nonUB) PPI interactions at distinct locations in the TS 

networks: (1) outside units, (2) within the same unit or (3) between two units or one unit 

to outside (Figure 2.3E). We applied the Chi-square test to evaluate the statistical 

association between the type of PPI and its location in the network (p-value <10-4) and 

used Pearson's residuals to describe the positive or negative association between the 

conditions. As expected given the ratio of UB and nonUB proteins along BioInt units, 
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we found that UB-UB interactions are more frequently located within BioInt units while 

UB-nonUB hetero and nonUB-nonUB homotypic interactions are significantly located 

outside the Bioint units. Most notably, heterotypic interactions also appeared frequently 

connecting the BioInt units with proteins outside the units. Overall, these results 

indicate that HK units are central in the TS networks and further; UB-UB PPIs lie at the 

center of BioInt units. On the other hand, the heterotypic interactions between nonUB-

UB proteins seem to be key to link the functions in the network. 
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Figure 2.4 Systematic mapping of DGs into TS BioInt libraries. 
(A) Venn diagram illustrating the overlap between our unified transcriptome and DGs from the DisGeNET 
repository. (B) Line plots showing the % of DGs and transcripts mapped to TS RNA-Seq profile, in the TS 
networks annotated with at least one GO-BP and in the selected BioInt units. (C) Box plots comparing tissue 
distribution of proteins encoded by nonDG (green) and DGs (orange) (D) Density plot describing the DG % 
identified in each BioInt unit overall. Vertical lines separate Bioint units in three groups based in DG %. (E) 
Box plots comparing the DG accumulation (X, Y and Z groups as defined in panel D) with the % of UB 
protein per unit tissue distribution. (F) Heatmap representing the broad functional classes (rows) assigned to 
the BioInt units including an increasing % of DGs (columns). Left dendogram and clusters result from a 
complete-linkage clustering using Euclidean distance. Left column summarizes the functional classes 
according to tissue expression patterns observed in Figure 3B. Tissue-enriched (TE, red), ubiquitously-
expressed (HK, blue) and mixed HK/TE functions (purple). (G) Box plots comparing the protein % 
incorporated in the largest subnetwork of the BioInt unit (main component), the number of subnetworks by 
BioInt unit, and average protein degree. (H) Heatmaps representing the statistical association between the 
type of PPI and their location along HK and TE units. Color scale represents the Pearson's residuals 
obtained from Chi2 test p-value <10-4. (I) Box plots comparing the total overlap along BioInt units including 
or not including DGs and the standard deviation (sd) of degree and betweenness coefficients of DGs and 
nonDGs across TS networks (C, E, G and I) (Wilcoxon Rank Sum test; p-value **** <10-4 and *** <10-3). 

 

2.4.7  Systematic mapping of disease genes (DG) in BioInt-U reveals 
potential large-scale topological vulnerabilities: DGs are widely 

expressed but accumulate in TEu 

 
The preferential location of disease-associated genes (DGs) in the TS networks 

may bring valuable insights into sensitive points in network connectivity. To explore 

this, we collected 9,259 DG associations for 1,948 pathologies from the DisGeNET 

repository (Piñero et al., 2020). Our global transcriptome covered 86.8% of DGs and 

conversely, 43.5% of transcripts (expressed genes) were associated to at least to one 

disease (Figure 2.4A). The DG coverage was barely affected when considering the 

proteins in the TS-networks but notably dropped in the selected BioInt libraries (Figure 

2.4B). This indicates once again that a fraction of DGs is only incorporated in units 

including more than 200 proteins. Furthermore, we found that more than 55% of total 

DGs were ubiquitously expressed and overall, displayed a broader expression profile 

than nonDG proteins (Wilcoxon Rank Sum test, p-value <10-4, Figure 2.4C).  

 

However, when evaluating the DG% by BioInt units, we found that DGs 

preferentially acumulate in TE units with lower percentage of UB proteins (Figure 2.4D, 

E). In fact, the BioInt Units that incorporate the highest percentage of DGs are almost 

exclusively annotated in >5 tissues. Unexpectedly though, BioInt units accumulating 

>50% of DGs are more sparsely connected (i.e., exhibited an smaller main component 
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and more subnetworks), but incorporate proteins with more central positions in the TS 

network (Figure 2.4G). To evaluate whether the DGs tend to accumulate in any 

particular type of function, we took profit from the functional classification retrieved in 

Figure 2.3B, and found that BioInt units including 50-80% DGs were implicated in 

most types of functions (column Y in Figure 2.4F). However, BioInt units accumulating 

more than 80% of DGs were found to be more frequently related to TE or mixed 

HK/TE processes. Concordantly, the less targeted BioInt units were distinctively 

associated to HK biological processes. 

 

2.4.8  Interaction of proteins encoded by DGs predominantly located 
between highly overlapping TEu 

 
Having confirmed that tissue-enriched BioInt units (TEu) tend to incorporate 

more DGs, we next questioned whether the PPIs between DGs would present 

distinctive positions in the HK units or in the TE units, that might indicate topological 

vulnerabilities. We found that DG-DG interactions were more frequently located within 

BioInt units while nonDG-nonDG interactions were more frequent outside (Figure 

2.4H). More important, DG-DG interactions were also notably located between TE 

units. We also found that DGs tend to be found in BioInt units presenting a larger 

overlap when compared to nonDGs (Figure 2.4I). 

 

The connectivity properties of any protein directly depend on the range of PPI 

available at each TS network. This feature might be crucial to understand the variable 

impact the same DG can have in different tissues. We found that the variation (in terms 

of standard deviation) of betweenness and degree coefficients were significantly larger 

in DGs than other proteins not associated to any disease (Figure 2.4I). This 

observation may provide critical insights into the mechanisms underlying TS disease-

phenotypes linked to DGs with wide distribution. 
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2.4.9  Genes associated with TS diseases accumulate significantly 
in BioInt units characteristic of the target tissue 

To further explore the mechanisms underlying the emergence of TS patho-

phenotypes, we next proceed to evaluate the DG mapping at disease-specific and 

tissue-specific levels. From the 1,948 diseases annotated in DisGeNET, we identified 

463 diseases unambiguously associated with 11 tissues (for example, "nefrotic failure" 

is a kidney dysfunction or "T-cell lymphoma" is associated to alterations in the immune 

system). The complete list of disease-tissue associations and DGs is available in 

Supplementary Data 2.5. It is reasonable to assume that the functions with most 

critical roles for a given tissue will accumulate more DGs found in the patient 

population. Likewise, it is also reasonable that a functional unit will only be efficient 

when a large fraction of its components are available in normal standards. Of note, the 

DG associations in DisGeNET do not only refer to causal mutations but also to 

biomarkers or de-regulated genes. Thus, it is plausible we could find several DGs 

simultaneously altered in the same patient. On this basis, we estimated the potential 

impact of each disease in the TS functions by addressing the overrepresentation of 

disease-specific DGs in each BioInt unit (hyper-geometric test, p-value <0.05).  

 

Most diseases exhibit tissue-specific phenotypes from which it follows that DGs 

should accumulate in certain tissues in particular (hereafter referred to as "tissue-

consistent" impact). We have also discussed in previous section that different cell types 

might specialize in certain functions. Based on this, we speculate the DGs of tissue-

consistent diseases might accumulate in functional classes characteristic of given 

tissue physiology. The BioInt units enriched in tissue-consistent DGs were 

homogeneously related to almost all types of functions (Figure 2.5A). Thus, to 

increase the analysis resolution, we only considered Bioint units enriched in DGs for at 

least 10 tissue-consistent diseases (corresponding to top 3rd Quartile) (Figure 2.5B). 

We found that the BioInt units enriched in tissue-consistent DG lists are accordingly 

involved in functions specific to the tissues in consideration. This trend was most 

conspicuous in TE BioInt units related to immune, muscle or neuron functions, wich 

are predominantly enriched in DGs from tissue-congruent diseases. Likewise, the 

clustering analysis corroborated that tissues associated to the same broad histological 

groups (colored rows in Figure 2.5B) significantly accumulate DGs in units involved in 
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the same functional classes (columns in Figure 2.5B). This analysis further enabled to 

discern that several function classes considered as HK processes were distinctively 

altered in different tissues. For example, DNA-related functions appeared to be more 

frequently altered in female-organ diseases than in gastro-intestinal disorders. 

Likewise, stress and signaling-related functions were preferentially altered in immune 

system-related disorders.  

 

2.4.10 BioInt units enriched in tissue-consistent DGs (BiUTC) exhibit 

distinctive network properties 

From the total 8,285 of BioInt units identified in the 25 TS libraries considered for 

DG mapping (Supplementary Data 2.5), 60% were significantly enriched in DGs of 

tissue-consistent pathologies (set named BiUTC in the schematic representation in 

Figure 2.5C). Nonetheless, a 35.8% of these BioInt units were also enriched in DGs 

associated to diseases specific to other tissues (referred to as tissue-inconsistent, and 

set BiUTIC in Figure 2.5C). This indicates that the enrichment in DGs is not sufficient to 

justify the emergence of the pathology. Thus, we speculated that the BioInt units that 

are really decisive to trigger pathomechanisms must hold distinctive properties in the 

network topology. To explore this hypothesis, the 25 TS libraries enriched in at least 

one tissue-consistent pathology were grouped in 11 major organ groups 

(Supplementary Data 2.5) to then compare the topological properties of: BioInt units 

enriched in tissue-consistent diseases (named BiUTC); BioInt units enriched in tissue-

inconsistent DGs (BiUTIC); and BioInt units not enriched in any DGs (BiUX, Figure 2.5D). 

 

The network analysis at disease-specific level revealed the same trends 

observed for the systematic DG mapping (Figure 2.4). BioInt units accumulating DGs 

of tissue-consistent diseases (set BiUTC in red in Figure 2.5C,D) tend to be expressed 

in fewer tissues and incorporate less UB proteins than BioInt units not affected by any 

disease or enriched in tissue-inconsistent DGs (sets BiUTIC and BiUX in Figures 

2.5C,D). Furthermore, the comparative analysis revealed that the BioInt units in set 

BiUTC frequently included proteins with higher degree and betweenness coefficients in 

the global TS PPI networks. Most remarkably, BioInt units enriched in DGs of tissue-

consistent diseases displayed a larger overlap with additional functional units. 
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Figure 2.5 Comparison of topological properties of BioInt units accumulating tissue-consistent 
DGs. 
Heatmaps representing the % of Bioint units by functional class enriched in at least one tissue-consistent 
disease (A) or in at least 10 tissue-consistent diseases (B). Dendograms and clusters result from a complete-
linkage clustering using Euclidean distance. (C) Schematic picture illustrating the types of BioInt unit 
evaluated in panel D. For each TS BioInt library we can distinguish: BioInt units enriched in DGs of tissue-
consistent diseases (BiUDT); BioInt units enriched in DGs of diseases not expected at the tissue (BiUD); and 
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BioInt units not significantly enriched by any DG set (BiUX). (D) Violin plots comparing the network properties 
of these three types of BioInt units defined above. (Bottom bars indicate the statistical significance, Wilcoxon 
Rank Sum test p-value; grey >0.05, orange <0.05 and green <0.001). 

 

 

In fact, the DGs assigned to tissue-consistent diseases are 1.5 times more 

frequently located at the intersection between BioInt units than proteins encoded by 

nonDG (Wilcoxon test, p-value <10-4). However, an unexpected observation is that the 

percentage of proteins in main component is similar but BioInt units in set BiUTC exhibit 

a larger number of disconnected subnetworks according to our current map of protein 

interactions. 

 

2.4.11 A case study: Mapping of differentially expressed genes to 
BioInt units predicts most vulnerable tissues and functions in 
pulmonary fibrosis and psoriasis 

 
The dissection of the molecular mechanisms underlying complex diseases is still 

an open challenge. One of the most widely used strategies to investigate pathological 

conditions is the identification of differential expressed genes (DEg) in RNA-Seq profiles 

from patient-derived samples. However, the most popular algorithms for DEg analysis 

assess the expression of each gene independently, thus DEg datasets frequently 

include a large number of transcripts/proteins disconnected from the PPI network. 

Likewise, gene expression is highly dynamic and so DEg datasets characterizing the 

same disease often give different profiles. All this makes the DEg data difficult to 

integrate and interpret. The integration of DGE profiles with functional enrichment 

analysis in protein interaction networks has been recently proposed to assist in the 

prioritization of disease-relevant targets (Nadeau et al., 2021). In a similar 

argumentative line and to test the analytical procedure presented in this work, we next 

illustrate how the mapping of disease-related DEg profiles into BioInt libraries can 

improve the prioritization of potential functional targets.  
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Figure 2.6 Mapping of pulmonary fibrosis and psoriasis RNA-Seq gene expression profiles into TS 
BioInt libraries 
(A, B) Venn diagrams summarizing the overlap between unified transcriptome, DGs collected from DisGeNET 
and differentially expressed genes (DEg) identified in RNA-Seq profiles of patients suffering from pulmonary 
fibrosis and psoriasis, respectively. (C) Heatmap representing the percentage of BioInt units enriched in DEg 
across TS libraries. (D, E) Heatmaps representing the types of functions accumulating most BioInt units 
enriched in DEg in the top 3 TS libraries in panel C. (F, G) Dot plots summarizing the BioInt units enriched in 
DEg identified in fibrosis and psoriasis profiles in lung and spleen tissues, respectively. Each dot represents a 
single BioInt unit and functions with > 0.6 Wang semantic similarity are grouped in clusters (Y-axis). The 
figure only includes top 10 largest clusters. The text describes the parent GO-BP in common to the BioInt 
units grouped together. Dot color indicates the type of function (bottom legend) and size the % of DEg.  
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We selected and analyzed two independent transcriptomic profiles 

characterizing gene expression changes in patients suffering from psoriasis and 

idiopathic pulmonary fibrosis (Meltzer et al., 2011; Qiu et al., 2021). Within these 

datasets, 91% of fibrosis-related and 83.5% of psoriasis-related DEg were mapped in 

our unified transcriptome dataset, respectively (Figures 2.6A,B).  

 

We next collected DGs associated with psoriasis and fibrosis in DisGeNET. 

Despite of the large number of DGs already associated to fibrosis (203), only 6.9% 

were found to be DEg in the transcriptome profile (Figure 2.6A). On the other hand, 

we only identified 30 DGs associated to psoriasis and none was DEg (Figure 2.6B). 

Similar to our previous analysis, we calculated the overrepresentation of DEg in each 

BioInt unit across all tissues (hyper-geometric test, p-value <0.05) and selected the 

25% most affected units. Interestingly, we found that the tissues including more 

functional units significantly enriched in DEg were precisely those in which the 

symptoms are commonly observed (Figure 2.6C). Furthermore, the functional types 

accumulating highest percentage of BioInt units enriched in DEg were also related to 

functions suspected to be critical in the diseases (Figures 2.6D,E). Finally, Figures 

2.6F,G summarize the functional signatures associated to the BioInt units enriched in 

DEg from fibrosis and psoriasis profiles in lung and spleen tissues, respectively. To 

simplify the analysis, we collapsed the BioInt units (dots) presenting a Wang's 

Semantic similarity coefficient > 0.6 into functional clusters (top 10 largest clusters are 

arranged in Y axes). In particular, the BioInt units most targeted by fibrosis-related DEg 

in lung included membrane permeability, proteolysis and apoptosis signaling-related 

functions (Sharma et al., 2021). In the case of psoriasis, stress-related protein folding 

and degradation-regulatory pathways were consistently altered in immune-related 

organs (Wang and Jin, 2019). The analysis confirmed that DE genes preferentially 

accumulate in biological processes already involved with fibrosis and psoriasis. 

Therefore, our analysis illustrates how BioInt units can provide additional insight into 

why these functions are more vulnerable and also suggest new DG candidates for 

further evaluation. 
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2.5  Discussion 
 

The topological characterization of TS-networks is crucial to dissect the 

mechanisms underlying tissue functional diversity and identify potential vulnerabilities, 

namely those related to genetic disorders. However, to our best knowledge, most 

investigations have focused on characterizing the topology of individual proteins and 

DGs without considering their functional context (recently reviewed by (Hekselman and 

Yeger-Lotem, 2020; C. Liu et al., 2020; Yeger-Lotem and Sharan, 2015). However, it 

should be noted that PPI networks are static representations of all the physically 

possible interactions, and these may not be always biologically meaningful. We 

advocate that the integration of proteins within their functional context can improve the 

assessment of network properties relevant for cell physiology. On this basis, we 

designed a network-based strategy to characterize functionally collaborating TS PPI 

consortia. We applied this framework on 33 human TS networks and conducted a 

systematic study of the topology patterns associated to distinct normal and 

pathological states. This analysis revealed how the topological properties of functional 

units may elucidate the mechanisms of TS functional diversity and deregulation 

(hypothesis illustration in Figure 2.7). 

 

As the very name implies, housekeeping (HK) functions are essential for the 

survival of any type of cell and are mostly exerted by ubiquitous (UB) proteins 

expressed in all tissues. Evolutionary selection has favored proteins involved in these 

functions and so UB proteins dominate TS network composition, accumulate more 

PPIs and locate at central positions in TS networks (Barshir et al., 2014; Bossi and 

Lehner, 2009; Dezső et al., 2008; Lin et al., 2009). Beyond the characterization of 

individual proteins, the systematic analysis of TS BioInt libraries further supported an 

in-depth comparison between HK and TE functions. We corroborated that HK units 

are related to core functions such as organelle trafficking, RNA or protein metabolism 

and are mostly made up of UB proteins with significantly larger degree and 

betweenness coefficients than proteins exclusively involved in TE functions. Most HK 

units included a small percentage of nonUB proteins that varied across the TS 

networks. In parallel, TE units also incorporated a large percentage of UB proteins 

(Figure 2.7A). While the extensive re-use of UB proteins in TS functions is well 
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described (Bossi and Lehner, 2009; Chapple et al., 2015; Podder et al., 2009), the 

role of nonUB proteins in HK functions is less studied. Our analysis corroborated that 

UB–UB PPIs are frequently located within functional units highlighting their fundamental 

roles at the core of the biological processes (Figure 2.7C). Conversely, we found that 

heterotypic nonUB–UB interactions preferentially connect functional units with other 

proteins outside the network. Our observations are in line with a recent investigation 

showing that cell-specific interactions link protein complexes in the TS interactome 

(Huttlin et al., 2021) and underscore that nonUB proteins are critical players in the 

coordination of both HK and TE functions. 

 

It is reasonable to assume that the characterization of mechanisms underlying 

tissue functional diversity will bring insights into the events triggering TS diseases. The 

pioneer studies characterizing the DGs topology suggested that deleterious proteins 

tend to display TS expression (Goh et al., 2007; Lage et al., 2008). Currently though, 

we find innumerous instances of UB proteins involved in diseases with tissue-restricted 

phenotypes. This indicates that TS protein expression is not sufficient to explain the 

emergence of TS diseases (Hekselman and Yeger-Lotem, 2020). Barshir and 

colleagues found that DGs tend to display tissue-exclusive PPIs in the tissue where the 

disease is manifested (Barshir et al., 2014). Lee and colleagues reached a similar 

conclusion when exploring the topology of neuron-related TS networks and 

hypothesized this might be key to understand the high prevalence of neurological 

diseases (Lee et al., 2020). The systematic mapping of DGs onto BioInt units 

corroborated that the transcript products of DGs tend to be more widely expressed 

than those coded by nonDGs (Figure 2.7E). Interestingly though, DGs tended to 

accumulate in functional units annotated in fewer tissues and DG–DG interactions and 

were more frequently located at the interface of TE and HK functions or connecting TE 

functions to other proteins outside in the network (Figure 2.7G). These results suggest 

that the impairment of TE functional coordination might be a key feature to spread TS 

homeostasis deregulation and overcome the threshold to trigger TS pathophenotypes 

(Figure 2.7D,H). A more thorough analysis of TS diseases revealed that DGs 

accumulate more frequently in functional units found in the disease-target tissues. This 

observation was particularly apparent in TS functions related to muscle, immune 

function or neuron physiology. 
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Nonetheless, many DGs accumulated in BioInt units in tissues other than the 

expected, indicating that DG enrichment is not the only event accounting for disease 

manifestation. In our view, this observation illustrates why the functional 

characterization of DGs might fall short to understand pathological mechanisms. 

Proteins are multifunctional and collaborate both in HK and TE functions. In turn, 

proteins establish dynamic PPIs and, as suggested in this work, acquire varying 

relevance depending on their TS interactome context (Figure 2.7D). In particular, our 

topological analysis reiterated that the functional units accumulating tissue-consistent 

DGs were actually TE BioInt units with significantly larger overlap with additional units 

(Figure 2.7E). Although multifunctional proteins have been previously associated to 

pathological events, our analysis brings further evidence towards this from a TS 

functional perspective. 
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Figure 2.7 Mechanisms underlying functional diversity and tissue vulnerability linked to TS protein 
networks.  
The main conclusions retrieved form this work can be applied in normal (left column) and disease (right 
column) conditions. First column: (A) HK units are mostly made of ubiquitous (UB) proteins while tissue-
enriched (TE) units incorporate a balanced percentage of UB and nonUB proteins. (B) Housekeeping (HK) 
units include proteins with significantly larger degree and betweenness coefficients when comparing to 
proteins in TE functions. (C) Homotypic UB protein-interactions (PPIs) are frequently located within functional 
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units, homotypic nonUB PPIs lay outside functional units and heterotypic interactions preferentially connect 
the functional units with other units or proteins outside in the tissue-specific (TS) network. (D) Proteins can 
establish different interactions according to their interactomic neighborhood and so the TS networks can 
show distinct topological rearrangements. Second column: (E) Disease genes (DGs) are more widely 
expressed than nonDGs but significantly accumulate in TE units. (F) TE units amassing most DGs also 
incorporate proteins with larger degree and overlap. (G) DG–DG interactions are frequently located within 
BioInt units. Particularly in TE units, DG–DG interactions do frequently connect TE units with additional 
proteins or units outside in the network. These observations suggest that the distinctive disease impact 
observed for TE units might be triggered by DGs with additional roles in functional coordination. (H) Overall, 
the TS connectivity patterns might be key to understand why the impact of UB-DGs could distinctively 
trigger the degeneration of particular tissues. 

 

 

In parallel, we made the unexpected observation that BioInt units accumulating 

most DGs are more sparsely connected, while tending to incorporate significantly more 

central proteins in the TS network. Dynamic interactions are known to play critical roles 

in the regulation and coordination of protein function. However, high-throughput PPI 

detection techniques preferentially detect stable interactions and thus, are more likely 

to dismiss transient PPIs. Although caution must be taken until the advent of more 

sensitive technologies, this observation suggests that the most vulnerable functions 

tend to include numerous transient interactions not yet identified. Our conjecture is 

aligned with previous results indicating that biological and disease modules do not 

necessarily coincide with topological clusters (Agrawal et al., 2018; Ghiassian et al., 

2015; Wang and Zhang, 2007). If confirmed, this observation would question the 

pivotal role of clustering algorithms in the design of network-based methods for 

biomedical research.  

 

To illustrate the benefits of the BioInt framework in a real case problem, we took 

advantage of two public transcriptome profiles from patients suffering from psoriasis 

and pulmonary fibrosis. The scarcity of already known psoriasis-causal genes together 

with the low overlap between fibrosis DGs and the corresponding DE transcriptome 

reflects the need for additional research bridging the molecular and pathophenotypic 

observations. The analysis presented here demonstrates the ability of our method to 

independently identify the most afflicted tissues and functions and thus bring novel 

insights to refine DG prioritization methods. 

 

The BioInt-U framework sets the stage for novel approaches to explore the 

functional relevance of TS topological properties. Nonetheless, it also has limitations. 
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The identification of BioInt units relies on PPI and Gene Ontology datasets, which are 

known to be over fitted by proteins of significant research interest. Until a more 

comprehensive characterization of the interactome and functionome, our investigation 

is likely to underestimate poorly characterized players. On the other hand, the analysis 

exploits static networks and ignores cell-specific temporal information of the particular 

tissue. The integration of dynamic and quantitative expression data could surely benefit 

network-centered investigations. Notwithstanding, is worth recalling that the use of 

quantitative data would also increase the analytical complexity. To compensate the 

lack of spatiotemporal data, we enabled functional units to overlap. In this way, we 

could evaluate all the possible combinations of functional consortia.  

 

Overall, the work presented here showcases the relevance of evaluating network 

topology from the functional perspective. The large-scale topological vulnerabilities 

inferred from our analysis could contribute to the refinement of network-based 

methods for DG candidate prioritization. Likewise, the evaluation of the topological 

context of DGs across tissues could facilitate the identification of the most critical drug 

targets while avoiding unpredicted off-targets. 
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2.6  Supplementary Data 
 

R code and input data to reproduce BioInt-U method is available in 
 https://github.com/GamaPintoLab/BioInt-U 
 

Supplementary data files are available in 
 https://github.com/GamaPintoLab/MLG_PhDThesis_SupData 

 
Supplementary Data S2.1 Descriptive summary of relevant parameters at each step of 

the BioInt-U framework. Organ samples are summarized in broader tissue groups. The 

transcriptome datasets were mapped into APID protein-protein interaction (PPI) dataset to 

generate TS-networks. Next, the enriched Gene Ontology Biological Process (GO-BP) terms 

were used to define the Bioint units. Only BioInt units with a size of 10 to 200 were selected. 

Transcript retention in selected BioInt units was calculated when compared to the total 

transcripts in TS networks. Median, 1st and 3rd Quartile sizes were calculated for each TS Bioint 

library. Finally, the coefficient of variation across tissues was evaluated for all the parameters in 

the table. 

 

Supplementary Data S2.2 Summary of key words used for the functional classification of 

BioInt units. The Bioint units were classified in 24 functional categories (first column) by 

performing a direct text mining of key words found in the description of Bioint units (second 

column).  

 

Supplementary Data S2.3 Complete Simpson's similarity analysis of BioInt and CORUM 

complexes. Table including all the pair-wise Simpson's similarity indexes between BioInt and 

CORUM complexes 

 

Supplementary Data S2.4 Complete description of functional and topological parameters 

of BioInt units. Table including all the topological parameters employed throughout this study. 

The combination of all BioInt units identified along the 33 tissues (second sheet) returned a 

unified Bioint library consisting on 728 unique BioInt Units (first sheet).  

 

Supplementary Data S2.5 Complete list of disease gene association with tissue-

consistent pathologies. First sheet includes a summary of the selected 463 diseases related to 

11 tissue-specific phenotypes. Second sheet details the list of DGs annotated for the total 1948 

diseases described in DisGeNET and, when available, the their tissue-consistent classification. 



 

 

 

 

3 Searching the overlap between network 

modules with specific betweenness (S2B) 

and its application to cross-disease 

analysis 
 
 
 

Data presented in this chapter was included in the following work: 
 

García-Vaquero ML., Gama-Carvalho M., De Las Rivas J. & Pinto FR., 
Searching the overlap between network modules with specific betweeness (S2B) and 
its application to cross-disease analysis. Sci Rep (2018).  

 
Author contributions: 
 

MG-V conceptualized the study, developed the method, performed the 
analysis and wrote the manuscript. FRP conceptualized the study, developed the 
method, performed the analysis and wrote the manuscript. MG-C supervised the 
study and reviewed the manuscript. JDLR supervised the study and reviewed the 
manuscript. 
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3.1  Abstract 
 

Discovering disease-associated genes (DG) is strategic for understanding 

pathological mechanisms. DGs form modules in protein interaction networks and 

diseases with common phenotypes share more DGs or have more closely interacting 

DGs. This prompted the development of Specific Betweenness (S2B) to find genes 

associated with two related diseases. S2B prioritizes genes frequently and specifically 

present in shortest paths linking two disease modules. Top S2B scores identified 

genes in the overlap of artificial network modules more than 80% of the times, even 

with incomplete or noisy knowledge. Applied to Amyotrophic Lateral Sclerosis and 

Spinal Muscular Atrophy, S2B candidates were enriched in biological processes 

previously associated with motor neuron degeneration. Some S2B candidates closely 

interacted in network cliques, suggesting common molecular mechanisms for the two 

diseases. S2B is a valuable tool for DG prediction, bringing new insights into 

pathological mechanisms. More generally, S2B can be applied to infer the ovelap 

between other types of network modules, such as functional modules or context-

specific subnetworks. An R package implementing S2B is publicly available at 

https://github.com/frpinto/S2B. 
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3.2  Introduction 
 

Disruption of a gene sequence may cause the dysfunction of the encoded 

protein, which can trigger the onset of a disease. Such genes are defined as disease 

causal genes. Nevertheless, a disease is a pathologic phenotype resulting from 

synergic disruptions of varied cellular functions caused by both genetic and 

environmental factors (Naylor and Chen, 2010). Consequently, disease associated 

genes (hereinafter called Disease Genes (DGs)) are not necessarily causal. They can 

be modifiers, that modulate disease severity, or phenotypical, unable to influence the 

disease course but responsible for disease phenotypes. Genes associated with a 

disease are more prone to interact with each other than with non-disease related 

genes, establishing network disease modules (Oti et al., 2006; del Sol et al., 2010). 

Disease modules are neighborhoods of the full interactome network containing all 

disease associated proteins (Ghiassian et al., 2015). As interactomic maps are still 

incomplete (Menche et al., 2015b) and the number of known DGs is limited (Brunner 

and van Driel, 2004), the identification of DGs remains an important issue, 

contributing to decipher molecular mechanisms of disease and to discover 

biomarkers and therapeutic options. 

 

Efforts to complete protein interactions networks include not only high 

throughput experimental approaches (Rolland et al., 2014), but also computational 

predictive methods, recently reviewed by Kotlyar et al. The latter can be based in 

sequence features, conservation across species, protein domains, 3D structure, 

interaction network topology, or a combination of several of the previous data types 

(Kotlyar et al., 2017). To expand the list of known DGs, information systems, like 

DisGeNet (Piñero et al., 2015), Open Targets (Koscielny et al., 2017) or DISEASES 

(Pletscher-Frankild et al., 2015), integrate and weight heterogeneous evidence 

sources linking genes with diseases, including text-mining approaches. 

 

Network-based DG prioritization methods aim to recover complete disease 

modules, using network interactions of known DGs to predict new DG candidates. 

One such method, DIAMOnD (Ghiassian et al., 2015), starts from the set of known 

DGs and iteratively adds one node to the disease module. The added node is the 
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more statistically enriched in DGs among its direct neighbors. Other DG prioritization 

algorithms are based on random walks (Köhler et al., 2008; Vanunu et al., 2010) or 

diffusion algorithms (Valentini et al., 2014). 

 

Diseases sharing phenotypes exhibit alterations in similar functional pathways, 

and their disease modules are more likely to overlap (Goh et al., 2007; Menche et al., 

2015b). Based on this similarity, researchers have identified common functions 

among the network neighbors of genes associated with Alzheimer’s and Parkinson’s 

diseases (Calderone et al., 2016), and looked for common neighbors of proteins 

associated with autism spectrum disorders (Sakai et al., 2011). 

 

However, to our knowledge, there is currently no network-based algorithm 

aiming to directly predict genes simultaneously associated with two diseases. These 

can provide hypotheses to explain molecular mechanisms of pathophenotypes 

shared between two diseases. In addition, these candidates can suggest new 

therapeutic targets, or provide grounds to repurpose current therapies from one 

disease to the other. With this aim, we propose a network-based approach called 

S2B (double specific-betweenness). S2B relies on the assumption that interactors 

more commonly found on shortest paths linking proteins encoded by genes 

associated to two diseases must appear in the disease modules overlap. To identify 

and rank these proteins, S2B employs a specific version of betweenness centrality, 

which measures how many times a node is involved in a shortest path, focusing 

specifically on shortest paths linking proteins associated with the two diseases.  

 

A similar network approach has been recently proposed to identify the 

mediator pathways between DGs and genes differentially expressed between healthy 

and disease samples (Park et al., 2017). Parallel application of this method to related 

diseases identified common mediator pathways. S2B approaches this problem from 

a different perspective, as it aims to identify individual proteins that are directly 

involved in the mechanisms of both diseases simultaneously. 

 

We applied S2B to Amyotrophic Lateral Sclerosis (ALS) and Spinal Muscular 

Atrophy (SMA), two fatal Motor Neuron degenerative Diseases (MND). The most 
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common form of SMA is caused by recessive mutations in the SMN1 gene, encoding 

the SMN protein. Numerous causal genes have been reported for ALS, involved in 

multiple functions such as oxidative stress control (SOD1) (Chen et al., 2013), vesicle 

trafficking (ALS2, FIG4, OPTN, VABP, CHMP2B) or proteasomal functions (UBQLN2, 

VCP) (Menzies et al., 2015). However, RNA metabolism is the function with the 

largest subset of MND causal genes (TARDBP, FUS, SETX, ATXN2, HNRNPA1, 

HNRNPA2/B1, ELP3 in ALS, and SMN1 in SMA) (Carrì et al., 2015; Siddique and 

Siddique, 2008). While under debate, protein aggregation and RNA metabolism 

deregulation are the most accepted hypotheses to explain the MND phenotypes. 

However, it is very intriguing how such critical events could distinctively affect Motor 

Neuron (MN) physiology 

 

Although ALS and SMA present distinct clinical features, they show great 

phenotypic and molecular similarities, implying a common etiology. Indeed, recent 

work from our group revealed that key MND causal genes SMN, FUS, TDP43 and 

SETX show tight physical and functional relationship (Gama-Carvalho et al., 2017). In 

the same vein, this paper shows that S2B predicts cross-disease genes (cDGs), 

providing new insights into the molecular mechanisms of MND.  
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3.3  Methods 
 

We considered the prediction of cDGs analogous to the problem of finding the 

overlap between two network modules when information about module composition 

is incomplete: consider an undirected graph G with two overlapping connected 

subgraphs A and B. However, we only know subsets a and b (seeds) that compose A 

and B, respectively. With this incomplete information, we cannot define the set of 

nodes in the overlap between A and B. We developed a method that knowing the 

sets of seeds a and b, predicts which nodes of G are more likely part of A and B 

simultaneously. This method is based in the computation of the Double Specific 

Betweenness score (S2B) presented in equation (3.1). 

 

  (3.1) 

 
Equation (3.1) computes auxiliary functions sp(k,i,j,G) (equation (3.2)) and 

t(i,j,G) (equation (3.3)). 

 (3.2) 

   (3.3) 

 

In both equations (3.2) and (3.3), d(i,j,G) is the length of the shortest path 

between the ith and the jth nodes of G. sp(k,i,j,G) is an indicator function with value 1 if 

node k is part of a shortest path between nodes i and j. t(i,j,G) is an indicator function 

with value 1 if the length of the shortest path between nodes i and j is equal or lower 

than the average shortest path length of G (avgd(G)). This path length filter is 

important to avoid the influence of nodes that are loosely related with the other 

S2B(k ,G ,a,b)=
sp(k ,i , j ,G)it(i , j ,G)

j

j∈b , j≠k

∑
i

i∈a ,i≠k

∑

t(i , j ,G)
j

j∈b

∑
i

i∈a

∑

sp(k ,i , j ,G)= 1				if				d(i , j ,G)= d(i ,k ,G)+d(k , j ,G)
0				if				d(i , j ,G)≠ d(i ,k ,G)+d(k , j ,G)

⎧
⎨
⎪

⎩⎪

t(i , j ,G)= 1			if			d(i , j ,G)≤avgd(G)
0			if			d(i , j ,G)>avgd(G)

⎧
⎨
⎪

⎩⎪
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module. Altogether, it means that S2B(k,G,a,b) is the fraction of shortest paths linking 

a node in a to a node in b that contain node k, with length smaller than the average 

path length of G. Before applying equation (3.1), nodes present in a and b 

simultaneously are discarded as these, by definition, belong to the overlap between A 

and B. Therefore, shortest paths starting from these nodes diverge from the overlap, 

increasing the chances of crossing with other shortest paths outside the overlap 

region.  

We observed that only a small number of nodes in the network achieved high 

S2B. If we plot S2B against 1-quantile(S2B), we typically observe an L-shaped curve. 

To define the threshold value that separates high S2B from low S2B we apply 

equation (3.4). This equation finds the S2B that minimizes the distance to the origin 

in the referred L-shaped curve. 

 

 

 

(3.4) 

 

Besides considering only nodes with high S2B, we also implemented two 

specificity scores (equations (3.5) and (3.6)). 

 

   (3.5) 

   (3.6) 

 

SS1 is the probability that the S2B of node k with seeds a and b is equal or 

higher than the same score computed with random seed sets aR and bR. A high SS1 

means that the S2B is specific for the initial seed sets. SS2 is the probability that the 

S2B of node k in graph G is equal or higher than the same score computed with a 

random graph GR, were nodes maintain their degree but edges are randomly 

shuffled. A high SS2 means that the S2B is specific for the connectivity patterns in G 

and is not a consequence of the high centrality of k. To compute each specificity 

score, 200 random seed sets, or randomized networks were employed. Each 

SS1 = P S2B(k ,G ,a,b)≥ S2B(k ,G ,aR ,bR )( )
SS2 = P S2B(k ,G ,a,b)≥ S2B(k ,GR ,a,b)( )

S2Bt = argmin
S2B(k ,G ,a ,b)

S2B(k ,G ,a,b)
max
k

S2B(k ,G ,a,b)( )
⎛

⎝
⎜
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⎞

⎠
⎟
⎟

2
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⎝
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randomization contributes to the score of all nodes simultaneously. The computation 

of S2B and specificity scores took around 22 minutes in a 2.8 GHz Intel Core i7 

processor and 8 GB of RAM when using a network with 12424 nodes, 90333 edges, 

197 ALS and 48 SMA DGs. A description of the use of S2B method to prioritize cDGs 

is presented in the Supplementary text. 

 

3.4  Supplementary methods 
 

Retrieval of Disease Genes We retrieved all the ALS and SMA disease genes 

(DGs) described on OMIM (Online Mendelian Inheritance in Man; 

(www.nlm.nih.gov/mesh/MBrowser.html) (Hamosh et al., 2002) and DisGeNET; 

(http://www.disgenet.org) (Piñero et al., 2015) databases in September 2016 

(Supplementary Data S3.1). In both cases, we took all the available associations 

without any quantitative filtering. We also merged associations for available subtypes 

of each disease. 

 

PPI data collection and network construction Human physical Protein-

Protein Interaction (PPI) data was extracted from HuRI (Human Reference Protein 

Interactome Mapping Project) (interactome.baderlab.org) (Rolland et al., 2014; Rual 

et al., 2005; Venkatesan et al., 2009; Yang et al., 2016; Yu et al., 2011) and APID 

(Agile Protein Interaction Dataserver) (apid.dep.usal.es/) (Alonso-Lopez et al., 2016) 

databases (accessed in February 2017). We constructed undirected and unweighted 

networks using igraph R-package (Csárdi and Nepusz, 2006). Loop and multiple 

edges were eliminated and only the main component of the network was selected. 

Finally, ALS and SMA DGs were labeled as seed nodes. 

 

Artificial disease modules Three different types of modules were used, based 

on distinct hypothesis for the spread of disease-causing perturbations across cellular 

networks. Shell modules (Ghiassian et al., 2015) are composed by a seed node and 

all other nodes in the network at distance of 2 or lower. These artificial modules 

assume that the perturbation spreads homogeneously through the network. 

Connectivity modules (Ghiassian et al., 2015) are built iteratively around a seed node, 



Chapter 3: S2B Specific-Specific Betweenness 

 

M.L. García-Vaquero, 2022 97 

adding at each step the node most significantly enriched in links to previous module 

members. These modules assume that disease perturbations affect predominantly 

nodes that are specifically linked to causal genes. Random walk with restart (rwr) 

(Köhler et al., 2008) modules simulate the path of an imaginary walker that, at each 

time step, moves to a randomly chosen direct neighbor or, with a given restart 

probability, returns to the seed node. The nodes with higher probability of being 

visited by the walker constitute the model. These modules assume that disease 

perturbations spread more easily to nodes with multiple and shorter paths linking to 

the causal nodes. Real disease modules can be a mixture of these and other module 

types, as the disease perturbation pattern along the network may depend on the type 

of molecular function of each protein and the nature of each protein-protein 

interaction. 

Artificial disease modules were constructed using the APID3 protein interaction 

network. Proteins with a degree between 19 and 22 were selected as possible causal 

seeds for the artificial modules. Each seed originated three artificial modules with 

different topological properties. Shell modules were composed by the seed and 

proteins at distance 1 or 2 in the network. Only shell modules with more than 200 and 

less than 400 proteins were kept. Connectivity modules were composed by the seed 

and 249 proteins added iteratively. In each step, all proteins out of the growing 

module were tested for having a higher than expected number of links to proteins in 

the module using a hypergeometric test. The protein with the smallest p-value was 

added to the module. Random walk with restart modules were composed by the 250 

proteins with higher occupancy probability in the random walk stationary distribution 

initiated in the seed node with a restart probability of 0.75. The stationary distribution 

was determined numerically as described in (Köhler et al., 2008). Within each 

topology type, existence of overlap between all possible module pairs was evaluated. 

Only module pairs where the overlap contained between 50 and 125 proteins were 

used to test S2B performance. 

 

Functional enrichment comparison We performed a comparison of 

Functional Enrichment Analyses (FEAs) of MND-Disease genes (MND-DGs) set and 

S2B candidate genes. The initial gene sets entailed 370 MND-DGs (295 ALS and 93 

SMA genes, being 18 common to both diseases) and 232 S2B candidate genes. 
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Functional enrichment of Disease Genes gathers only the GO terms that were 

associated to at least one ALS and SMA gene simultaneously. Both sets were 

functionally enriched for Gene Ontology Terms (GO) Biological Process (BP) using 

EnrichGO R-package (Yu et al., 2012). Results were filtered using an adjusted p-

value ≤ 0.05 and human genome background frequency ≤ 0.10. To better reflect the 

statistical significance of the results; we calculated the fold enrichment of each GO 

term (ratio between the frequency of the GO in the gene list and the frequency of the 

same GO in the human genome background gene list). The FEAs returned 461 and 

718 enriched GO terms for MND-DGs and candidates respectively. Due to the Gene 

Ontology (GO) hierarchical structure, when a GO term is enriched it is likely that some 

of its ancestors are also enriched, increasing the results size and redundancy. In 

order to facilitate the analysis of the results, we applied a simplification workflow 

(Supplementary Figure S3.1B). We firstly created GO groups of GO terms showing 

gene co-occurrence (at least an overlap of 70% of associated genes) and semantic 

similarity (GO terms that presented a Lin's semantic similarity score ≥ 0.70) 

(Supplementary Figure S3.1B1). This approach finds "hidden" commonalities 

between apparently different GO terms, thus it was applied jointly for both FEAs. 

When a GO group was formed, it retained the 3rd quartile of fold enrichment and the 

sum of gene frequencies of the merged GO terms for candidate and Disease gene 

sets respectively (Supplementary Figure S3.1B1). 

 

Figure S 3.1 Functional enrichment analysis (FEA) simplification and comparison workflow 
(A) FEA of S2B candidate and Disease Genes (MND-DGs) sets. MND-DGs FEA gathers only the GO terms 
that were associated to at least one ALS and SMA gene simultaneously. (B) Functional simplification; 1) 
Resulting GO terms are merged into GO groups by gene co-occurrence and semantic similarity, 2) GO 
groups are classified based on the most recurrent key term and 3) GO groups are assigned to a final set 
according to the genes associated to each GO term in the respective GO group. 

  Candidate genes FEA 

GO groups 

GO:0005125 

GO:7529911 
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GO:6771000 
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Assign to each GO group a 
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  - Adjusted p-value < 0.05 
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Due to the heterogeneity of biological processes retrieved, we manually 

created 15 major functional classes (GO classes) defined each one by a set of key 

words described in Table S3.1. Then, each GO group was assigned to the GO class 

most represented in the contained GO terms' descriptions (Supplementary Figure 

S3.1B2). Finally, GO groups were divided in three sets according to; if they had GO 

terms associated only to candidate genes, to MND-DGs or to both initial gene sets 

(Supplementary Figure S3.1B3). 

 

 
Table S 3.1 GO classes and corresponding key terms used to define themby text mining of GO 
terms 

 
 GO class name Key terms 
1 Nervous system neuron, synaptic, axon, microglial, 

glial, neural, neuromuscular, 
neurogenesis, nervous 

2 Immune system immune, host, pathogen, interferon-
beta, cytokine, fungus, interleukin-2, 
interleukin-1, leukocyte 

3 Muscle Muscle 
4 Stress stress, heat, oxidative, UV, X-ray, 

superoxide 
5 Folding aggregation, folding 
6 Apoptosis apoptosis, apoptotic, autophagy 
7 Cytoskeleton cytoskeleton, microtubule, actin 
8 RNA processing RNA, processing, mRNA, 

spliceosomal, splice 
9 Transcription transcription, chromatin, histone 
10 DNA repair DNA, repair 
11 Protein degradation degradation, proteolysis, 

ubiquitination, deubiquitination, ERAD 
12 Cell cycle cycle, mitotic, cytokinesis 
13 Protein 

export/import 
localization, transport, import, export, 
targeting 

14 Signaling transduction, cascade, signaling, 
signal 

15 Development development, developmental, 
differentiation, embryo, embryonic, 
morphogenesis 
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Analysis of shortest path clusters in S2B candidate interaction network 

The physical interactions between S2B candidates were retrieved form the 

APID3HuRI interactome, generating an S2B candidate interaction network. We 

generated clusters of candidates that tend to be part of the same shortest paths 

linking seed proteins. First, we gathered the list of shortest paths used in S2B 

computation and containing each candidate. For each pair of candidate proteins, we 

computed a jaccard coefficient evaluating the ratio of the number of shortest paths 

where both candidates were present together over the number of shortest paths 

where at least one of the candidates was present. Pairs of candidates with a jaccard 

coefficient greater than 0.25 were linked in a network. The clusters were expanded to 

include all the candidates that were present in 75% or more of the shortest paths 

containing the initial cluster members. Connected components with more than 3 

candidates or isolated cliques with 3 members were selected to generate a candidate 

cluster. 
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3.5  Results 

3.5.1  S2B performance with artificial modules  

S2B was applied to random seeds from overlapping artificial modules. Then, 

the precision and recall in the retrieval of nodes in the overlap region was evaluated. 

For three different types of artificial modules (see Supplementary Results), the 

probability of belonging to the overlap between the two modules decreased for lower 

S2B (Figure 3.1A). Figure 3.1A also confirms that discarding seeds known to be 

part of the overlap enhances S2B ability to identify top candidates. 

 

Figure 3.1 S2B performance with artificial disease modules 
(A) Fraction of candidates that were in the overlap between modules as a function of S2B decreasing rank. 
(B) Fraction of candidates that are direct neighbors of proteins in the overlap (C) Recall as a function of S2B 
decreasing rank. Recall is the fraction of proteins in the overlap between the two modules that have an 
S2B rank lower or equal to the candidate rank ploted. In A, B and C three models of disease modules were 
tested: shell, connectivity (conn) and random walk with restart (rwr) based modules. The impact on method 
performance of excluding seeds known to be part of both modules was evaluated in A and C. Hereafter, 
results were computed excluding seeds known to be part of both modules. (D) S2B robustness upon 
reduction of the fraction of module proteins used as seeds. (E) S2B robustness upon randomly rewiring a 
fraction of network edges. (F) S2B robustness upon replacing a fraction of input seeds by random proteins. 
In plots A, B, D, E and F, values are averages of S2B candidates in three consecutive ranks. In A, B and C, 
95 pairs of shell modules, 355 pairs of conn modules and 200 pairs of rwr modules were evaluated. In D, E 
and F, 50 pairs of shell modules were used. Shell modules have between 200 and 400 nodes, while conn 
and rwr modules have 250 nodes. The overlap between two modules is always between 50 and 125 
nodes. In A, B, C, E and F, a 50% random sample of each module was used as seeds.  

 

A B C

D E F

A B C 

D E F 
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The probability of being in the overlap decays rapidly for lower S2B. However, 

as shown in Figure 3.1B, candidates maintain a high probability of being direct 

neighbors of proteins in the overlap for a wider range of S2B ranks. S2B also 

correlates with the expected number of direct neighbors in the overlap 

(Supplementary Figure S3.6A). Conversely, recall, that is the fraction of all the 

nodes in the overlap that are correctly predicted in the top ranked S2B candidates, 

grows almost linearly in the best 50 candidates, and then converges more slowly to 

its maximum plateau (Figure 3.1C). Figure 3.1A-C show that S2B performs better 

for random walk with restart (rwr) modules, followed closely by shell modules, both in 

terms of precision and recall. Performance in connectivity modules is weaker, 

although maintaining similar trends. S2B performance is similar knowing 50% or only 

30% of the proteins involved in disease (Figure 3.1D and S3.6B). We also assessed 

the impact of false edges in the network (Figure 3.1E and S3.6C) confirming an 

expected decrease in performance, mainly among the 50 top-ranked candidates. But 

even when 20% of the network edges are randomly shuffled, prediction quality is not 

strongly affected. Lastly, Figure 3.1F and Figure S3.6D show that S2B performance 

is only slightly decreased by inclusion of up to 40% random seeds. Overall, S2B is 

robust to changes in module topology, incomplete disease characterization, and false 

positive edges and disease-gene associations. 

 

3.5.2  Comparing S2B with single disease prioritization methods  

To our knowledge, there is currently no other method to predict proteins 

simultaneously associated with two related diseases (cDGs). However, there are 

several methods to prioritize genes associated with one disease. We considered 

applying one of these methods to the seeds of two diseases separately as an S2B 

alternative. Proteins in the intersection of the two prediction sets would be candidates 

for simultaneous association with both diseases. We tested this hypothesis with the 

DIAMOnD algorithm (Ghiassian et al., 2015). For each module, 250 iterations were 

computed and the intersection between the two sets of 250 proteins was compared 

with the known overlap, estimating DIAMOnD precision (Table 3.1). 
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Table 3.1 Precision of DIAMOnD and S2B predictions of proteins in the overlap between pairs of 
artificial modules 
Predictions are matched relatively to the number of candidates generated by DIAMOnD for the same pair of 
modules. 50 module pairs of each type were evaluated. 

 

 

 

 

 

 

 

 

 

DIAMOnD predicts many candidates for connectivity modules with moderate 

precision, while for shell and rwr modules the number of candidates is generally small 

and precision low. A better performance of DIAMOnD with connectivity modules was 

expected, as these are generated with the same algorithm used by DIAMOnD to 

make predictions. For each pair of artificial modules tested, we selected from the top 

S2B candidates the same number of candidates predicted by DIAMOnD. The 

matched S2B precisions are higher than DIAMOnD’s for shell and rwr modules, but 

lower for connectivity modules (Table 3.1). For this type, the number of DIAMOnD 

candidates is large and, as shown in Figure 3.1A, S2B precision for connectivity 

modules decays quickly with candidate rank. S2B predictions would have a median 

precision of 0.60 (similar to DIAMOnD) if the top 20 candidates were considered. In 

conclusion, although DIAMOnD is a good approach for connectivity type modules, 

S2B provides a good performance for every type of module tested. 

 

3.5.3  Identification of common MND genes using S2B 

 
To evaluate the potential of S2B, we focused on the Motor Neuron Diseases 

(MND) Amyotrophic Lateral Sclerosis (ALS) and Spinal Muscular Atrophy (SMA). DGs 

(seeds) of ALS and SMA (available in supplementary material) were identified from 

OMIM (Hamosh et al., 2002) and DisGeNET (Piñero et al., 2015). Human protein 

interaction networks from two different origins were used. APID (Agile Protein 

Shell 4 [1-9] 0.00 [0.00-0.18] 1.00 [0.75-1.00]

Connectivity 135 [104-149] 0.60 [0.54-0.73] 0.18 [0.16-0.22]

RWR 8 [1-26] 0.13 [0.00-0.25] 1.00 [0.88-1.00]

Module type
Precision median [1stQ-3rdQ] 

# Candidates retrieved 
by DIAMOND (equal to # 

top S2B candidates) 
median [1stQ-3rdQ]

S2BDIAMOnD



Chapter 3: S2B Specific-Specific Betweenness 

 

M.L. García-Vaquero, 2022 104 

Interaction DataAnalyzer) (Alonso-Lopez et al., 2016) gathers literature reported 

protein interactions, while HuRI (Human Reference Protein Interactome Mapping 

Project) results from unbiased large scale screens for binary interactions (Rolland et 

al., 2014; Rual et al., 2005; Venkatesan et al., 2009; Yang et al., 2016; Yu et al., 

2011). Literature-based protein interaction networks are densely connected around 

proteins of biomedical interest, while large scale experimental techniques may fail to 

detect interactions between certain types of proteins, such as membrane proteins 

(Brito and Andrews, 2011). In a comparative analysis of S2B results with these 

networks (supplementary text, Figure S3.3), it was observed that the fraction of 

common S2B candidates grows with the level of confidence of protein interactions 

retrieved from the literature. A mixed APID/HuRI network also shows a high fraction of 

candidates in common with the separate analysis of the two networks (Figure S3.3). 

Finnally, we opted to merge HuRI with APID interactions reported in a minimum of 3 

independent experiments (APID3). This maximizes global interactome and DG 

coverage while avoiding poor quality interactions. Analysis of 197 ALS and 48 SMA 

DGs (Supplementary Data S3) within the APID3HuRI network returned 232 

candidate proteins with a S2B higher than S2Bt and both SS1 and SS2 higher than 

0.90 (Supplementary Data S3). 

 

3.5.4  Comparative FEA of S2B candidates and DGs 

 
S2B candidates should be involved in processes associated with both ALS 

and SMA DGs (MND-DGs). To assess this hypothesis we performed a comparative 

Functional Enrichment Analysis (FEA) of Gene Ontology (GO) biological processes 

associated with S2B candidates and MND-DGs sets. For the latter, only enriched GO 

terms associated with both ALS and SMA DGs were considered. MND-DGs and S2B 

candidates were enriched in 853 and 1110 GO terms respectively. S2B terms 

contained 43% (392) of the MND-DGs terms. Among the 232 S2B candidates are 5 

SMA seeds, 19 ALS seeds and 2 DGs associated with both ALS and SMA (not used 

as seeds but selected as candidates). Common GO terms could be due to the 

presence of these seeds among S2B candidates. To evaluate this hypothesis, we 

performed a randomization test, repeating the FEA with 1000 random sets of 232 
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proteins extracted from the interaction network, ensuring that 5 SMA DGs, 19 ALS 

DGs and 2 DGs associated with both ALS and SMA were selected. None of the GO 

terms enriched in the S2B candidate set was randomly enriched in more than 3.6% 

of the random sets, showing that S2B GO terms are not significantly biased. 

Additionally, the fraction of GO terms enriched in the random sets also associated 

with MND-DGs was significantly lower than the observed for the S2B candidates 

(p<0.001, randomization test). 

 

 
Figure 3.2 Comparison of functional enrichments between S2B candidates and Disease Genes 
(MND-DGs) sets 
Two independent Functional Enrichment Analyses (FEAs) were performed for S2B candidates and DG sets. 
FEA results were simplified by merging GO terms into GO groups by gene co-occurrence (if they have 70% 
of associated genes in common) and semantic similarity (if they have a Lin similarity score higher than 
0.70). To further simplify the results, each GO group was assigned to a single GO class by counting the key 
words most frequent in GO terms descriptions (supplementary text). 67 GO groups were not related to any 
GO class and therefore were discarded. (A) GO groups related only to S2B candidates genes. (B) GO 
groups related both with S2B candidates and with MND-DGs. (C) GO groups related only with MND-DGs. 
Each dot represent a single GO group characterized by the sum of gene frequencies (dot size). GO groups 
with a 3rd quartile fold enrichment higher that 7 are highlighted with bold border.  

 

Among biological processes uniquely enriched in S2B candidates or in MND-

DGs there were still similar processes. Therefore, we applied a simplification workflow 

(Supplementary Methods) minimizing redundancy by merging them as GO groups 

(according to overlap between gene sets and to semantic similarity). We further 

simplified the results by assigning GO groups to functional classes. Finally, we divided 

GO groups into three sets; GO groups containing only MND-DGs, S2B candidates or 

both (Figure 3.2). 
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Functional simplification generated 131 GO groups, 48 common to both S2B 

candidates and MND-DGs sets (Figure 3.2B), representing 62% of the MND-DGs 

GO groups and covering 13 out of the 15 GO classes. Removing term redundancy 

further increased the recovery of MND-DGs processes by S2B candidates. There are 

still many GO groups that belong to unique sets (Figure 3.2A,C), but most belong to 

GO classes that are represented in both S2B candidate and MND-DGs sets. The 

exceptions are two groups of the ‘Protein Degradation’ class, which are only enriched 

in S2B candidates. Interestingly, protein degradation is a relevant pathway for 

neurodegeneration and has been previously associated with ALS (Lin et al., 2017).  

S2B candidate GO groups have higher fold enrichments (ratio between frequency of 

GO term in the gene list and frequency of the same GO term in the background (the 

human genome)) than MND-DGs unique GO groups (bold border dots in Figure 

3.2A,C). Although MND-DGs set gathers the highest number of nervous system-

related groups (Figure 3.2C), these have lower fold enrichment when compared with 

those present in both S2B candidates and MND-DGs sets (Figure 3.2B). S2B 

stronger associations are possible due to the higher specificity of processes enriched 

in the candidate set.  

 

Overall, FEA of S2B candidates identifies biological processes similar to those 

found simultaneously in ALS and SMA DGs. However, S2B has a higher capacity to 

uncover specific processes linked to MND phenotypes. S2B candidates are also 

significantly enriched in genes associated with neurological, mental and muscular 

diseases (Supplementary Results). This association is an independent observation 

supporting S2B ability to identify genes in disease module overlaps. 

 

3.5.5  S2B candidates are enriched in DGs simultaneously 
associated with ALS and SMA identified from different 

sources 

 

To further validate S2B predictions, we searched for different evidence sources 

from which DGs for ALS and SMA could be retrieved. We collected DGs from Open 
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Targets (Koscielny et al., 2017) and Diseases (Pletscher-Frankild et al., 2015) and 

filtered out DGs that were in common with DisGeNet or OMIM, or that were not 

mapped in the APID3HuRI interactome. Open Targets, DISEASES and DisGeNet 

have text mining approaches and some experimental information sources in 

common, but resulting disease associations are not extensively overlapping. To 

complement the list of ALS and SMA DGs not used as input for S2B, we performed a 

pubmed abstract search for all proteins in the APID3HuRI interactome that were not 

associated with ALS or SMA through DisGeNet or OMIM. The intersection of these 

novel DGs sets and the S2B candidate list is reported in Table 3.2. S2B candidates 

are significantly enriched for ALS and SMA DGs obtained from the three sources. 

Particularly relevant, and in agreement with S2B rationale, is the fact that our 

candidates have a stronger enrichment for DGs associated simultaneously with both 

diseases. Overall, we found independent evidences that 99 S2B candidates (out of 

the 206 not previously associated) are associated with ALS or SMA, 37 of which have 

evidences for association with both diseases (Supplementary Data S3). 

 

Table 3.2 Enrichment of S2B candidates in ALS and SMA DGs from diferent evidence sources. 
Open Targets and DISEASES platforms were queried for ALS and SMA DGs. For the Pubmed abstracts 
category, a gene was considered associated with a disease if at least one abstract contained the gene 
symbol and the disease name (“Amyotrophic Lateral Sclerosis” or “Spinal Muscular Atrophy”). Abstract 
search was performed with the reutils R package. S2B candidates and interactome network nodes that 
were DGs identified through DisGeNet or OMIM were excluded from this analysis. p-values were computed 
with an hypergeometric test. S2B candidates that are DGs according to these sources and the pmid of the 
associated abstracts are available in supplementary data. 
 

S2B 
candidates 

(206 
proteins)

APID3HuRI 
network 
(10991 

proteins)

Fold 
Enrichment p-value

ALS 44 1242 1.89 <10-5

SMA 8 152 2.8 0.005
Both 6 72 4.45 0.001
ALS 4 77 2.77 0.043
SMA 3 13 12.31 0.017
Both 1 1 53.35 <10-6

ALS 72 1482 2.59 <10-6

SMA 48 641 3.99 <10-6

Both 37 413 4.78 <10-6

DGs not present in 
DisGeNet or OMIM

Open 
Targets

DISEASES

Pubmed 
abstracts
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3.5.6  S2B candidate interaction network highlights molecular 
connections between ALS and SMA 

 
Seeking mechanistic hypothesis explaining MND phenotypes, we explored the 

physical interactions between S2B candidates (Figure 3.3) recovered from the 

APID3HuRI interactome. Out of the 232 candidates linking ALS and SMA, 215 are 

connected in a network component through 603 interactions. 

 

With the S2B candidate subnetwork we aim to demonstrate that our method 

output is not only a ranked list of proteins. Using the knowledge about the interaction 

between S2B candidates, we can search for groups of proteins that may be stronger 

candidates together than individually. We followed two approaches to identify 

structurally coherent subgroups within S2B candidates. First, we identified cliques 

(groups in which every protein interacts directly with all other members of the group) 

with more than 3 elements. The high connectivity of cliques may identify functional 

complexes. Second, we clustered proteins that co-ocurred in the shortest paths used 

by S2B (Supplementary Results). These clusters highlight pathways linking ALS 

and SMA DGs, suggesting common MND triggering factors. 
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Figure 3.3 S2B candidate interaction network. 
Edges represent direct physical interactions between S2B proteins retrieved from the APID3HuRI 
interactome. Cliques of at least 4 proteins are highlighted with black edges. Clusters formed by proteins 
that appear frequently together in the shortest paths used by the S2B method (supplementary text) are 
labeled by node color. A, B and C boxes outline examples in which cliques and clusters overlap. S2B 
candidates simultaneously identified as ALS or SMA Disease Genes are denoted by node square shape. 
Node size is proportional to the S2B score. 

A

B 

C
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The first approach returned 75 cliques divided in three connected components 

(black edges in Figure 3.3). The overlap between most cliques demonstrates the 

high density of interactions among candidates. The second approach returned 8 

clusters (labeled by node colors in Figure 3.3) with an average size of 17 proteins 

(ranging from 6 to 33). Interestingly, identified cliques and clusters display frequent 

overlap, which would be expected if S2B candidates link ALS and SMA disease 

modules through discrete molecular pathways.  

 

The most coherent overlap is found around the yellow cluster (Figure 3.3A), 

which captures four of the ten subunits of transcription factor TFIIH complex, involved 

in RNA polymerase II (Pol II) dependent transcription and the DNA Nucleotide 

Excision Repair (NER) pathway. The TFIIH core complex is formed by 7 subunits, 

including the ERCC2 and ERCC3 DNA helicases, which help to create the 

transcription bubble (Tirode et al., 1999). The activity of RNA polymerase II (Pol II) is 

induced by anchoring the CDK-activating kinase complex (CAK) to the TFIIH core 

complex. The CAK subcomplex is composed of MAT1, cyclin H and CDK7. The 

cluster further contains the GFH2H1 gene encoding the TFIIH-core complex p62 

subunit, primarily involved in NER pathway (Wu et al., 2013). 

 

A relation between neurodegeneration and DNA damage has been proposed 

(Madabhushi et al., 2014). This connection assumed particular relevance for MND 

with the discovery of mutations causing a juvenile form of ALS (ALS4) and autosomal 

dominant proximal spinal muscular atrophy (AOA2) in the gene encoding senataxin 

(SETX) (Chen et al., 2004; Moreira et al., 2004). Senataxin is a DNA-RNA helicase 

involved in RNA metabolism and DNA integrity maintenance (Skourti-Stathaki et al., 

2011). Strikingly, Senataxin and SMN protein have been found to collaborate in 

resolving DNA/RNA hybrids (R-loops), a process that requires tight balance to keep a 

commitment between correct RNA transcription and DNA damage control (Zhao et 

al., 2016). Recently, a growing number of reports point to R-loops and DNA damage 

as a key commonality between ALS and SMA (Farg et al., 2017; Hill et al., 2016; 

Jangi et al., 2017; Salvi and Mekhail, 2015; Wang et al., 2013). It is thus quite 

striking that proteins central to the transcription coupled repair and NER pathways 

have been selected as top candidates by S2B. 
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A second cluster highlighted in Figure 3.3B also displays a large overlap with a 

clique group. This group is dominated by splicing-related proteins such as SR 

proteins (SRSF1, SRSF3), SR-regulating kinases (SRPK2, CLK1, CLK3), general 

splicing factors (U2AF1, U2AF1L5) and splicing auxiliary components (YTHDC1, 

RNPS1). The group further includes RBMX and TRA2B (SFRS10), two RNA splicing 

regulators. Splicing is one of the critical functions that has been proposed to be 

altered in SMA, since the best known role for the SMN protein is the biogenesis of the 

splicing machinery. The SMN protein is further involved in generating the core 

machinery for other RNA-metabolism related functions including histone mRNA 

processing and cytoplasmic mRNA turnover (Li et al., 2014). The connection to 

splicing was also observed in ALS, as two of the most well studied disease causing 

mutations involve the TDP-43 and Fus proteins, which both act as splicing regulators 

(Gama-Carvalho et al., 2017). Splicing regulation relies heavily on multifunctional 

proteins that tend to establish self-regulatory interaction to control their expression 

levels. RBMX (also called hnRNPG) and TRA2B are able to act as either activators or 

repressors of splicing (Nasim et al., 2003). Interestingly, RBMX has been shown to act 

together with TRA2B to regulate splicing of the main SMA modifier gene, SMN2 

(Hofmann and Wirth, 2002).  

 

RNA binding proteins have also been shown to be closely involved in the 

maintenance of genome integrity and in the response to DNA damage (Shkreta and 

Chabot, 2015). This seems to involve both the establishment of direct interactions 

with nascent transcripts to prevent genomic instability, and the regulation of splicing 

of DNA repair, cell cycle and apoptosis genes. Within the members of this cluster; 

SRSF1, SRSF3, SRPK2, CLK1, U2AF1, RNPS1, RBMX and TRA2B have all been 

implicated in this process (Shkreta and Chabot, 2015). These candidates may thus 

highlight novel elements that disturb RNA processing networks critical for in MND 

phenotypes. 

 

A third cluster-clique overlap is centered on the RNA exosome complex 

components EXOSC4, EXOSC5 and EXOSC8 (Figure 3.3C). The RNA exosome is a 

conserved multi-protein complex located in the nucleus and the cytoplasm and is 

critical for both processing and degradation of various RNAs (McIver et al., 2016). 
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Several tissue-specific diseases and complex disorders have been linked to 

mutations in exosome complex proteins (Morton et al., 2018). In fact, EXOSC8 is an 

SMA associated gene (Boczonadi et al., 2014). Interestingly, this clique is integrated 

in a cluster that captures the SNRPB, SNRPC, PHF21A, and TCEA2 genes, among 

others. 

 

The SNRPB gene encodes the Sm B/B' protein, a component of the 

spliceosomal U1, U2, U3 and U5 small nuclear ribonucleoproteins (snRNPs), the 

building blocks of the spliceosome. Sm proteins are recognized by the SMN complex, 

which assembles them in a ring-like structure around the snRNAs, a function that is 

compromised in SMA leading to changes in the relative proportions of snRNP 

complexes (Wu et al., 2013). The interaction between EXOSC8 and SNRPB (Figure 

3.3C) goes in line with previous studies reporting that the Sm complex is required for 

the processing of small non-coding RNAs by the exosome (Coy et al., 2013). In 

contrast to SNRPB, SNRPC encodes a U1snRNP-specific accessory protein. 

U1snRNP complex interactions have recently been highlighted as an important link 

between ALS and SMA (Gama-Carvalho et al., 2017). 

 

PHF21A (BHC80) also interacts with EXOSC8 (Figure 3.3C). It is a component 

of histone deacetylase BHC complex and mediates transcriptional repression of 

neuron-specific genes in non-neuronal cells (Iwase et al., 2004). Conversely, PHF21A 

protein recognizes H3K4 specific methylation states, an histone that is associated to 

neurodevelopmental diseases such as Autism Spectrum Disorders (Vallianatos and 

Iwase, 2015). It is known that histone biogenesis disturbance may contribute to the 

etiology of SMA since low levels of SMN affect U7snRNP biogenesis and, in 

consequence, histone mRNA processing (Tisdale et al., 2013). This cluster reveals 

that MND phenotypes might be also influenced by tissue-specific chromatin 

deregulation events. 

 

The cluster surrounding EXOSC8 further includes the transcription elongation 

factor TFIIS encoded by TCEA2. TFIIS is a critical factor for efficient transcription 

elongation and interestingly, a top 10 ranked S2B candidate (Figure 3.3C). TFIIS 

directly binds Pol II to stimulate its release from promoter proximal positions and 
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thereby produce full length transcripts (Guo and Price, 2013). Thus, this cluster 

reveals strong links between RNA transcription, processing and turnover. On the 

other hand, recent results highlight important functions for the nuclear exosome in the 

response to DNA damage, including direct interactions with the Senataxin protein, 

which acts as an exosome co-factor for sites of transcription-induced DNA damage 

(Richard et al., 2013). 

 

The examples used for detailed exploration of the S2B candidate network 

(Figure 3.3A-C) were selected based solely on structural reasons. However, they 

outlined a tight relationship between RNA homeostasis (transcription, splicing and 

degradation) and DNA damage repair that, together with the previous knowledge 

about ALS and SMA DGs, supports its implications on MND etiology. We believe this 

analysis demonstrates S2B usefulness to predict protein candidates linking ALS and 

SMA and furthermore, suggest potential mechanisms that explain the molecular 

relation between the two diseases. 

3.6  Supplementary Results 
 

Double specific-betweenness (S2B) is a network analysis method tailored 

to take advantage of diseases known to have common phenotypes and predict novel 

cross-disease associated genes (cDGs). The principle behind S2B is that network 

paths connecting a protein associated with one disease to a protein associated with 

the other disease should go through proteins in the overlap between disease 

modules. Therefore, if we analyze all the known shortest paths linking one disease 

module to the other, the more frequent members of those shortest paths are very 

likely in the overlap between disease modules.  

 

The S2B method main inputs are protein interaction networks and lists of 

Disease Genes (DGs) known to be associated with the two diseases (seeds) 

(Supplementary Figure S3.2A). The core of the method is the computation of a 

version of Betweenness centrality measure - number of times a protein is part of a 

shortest path - that is specific for the lists of DGs (Fig S2B). For each node in the 

network, S2B counts the number of times the node is part of a shortest path between 
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proteins encoded by Disease A Genes to Disease B Genes. Shortest paths longer 

than the networks average path length are not included to avoid the influence of 

proteins loosely related to one of the diseases (yellow nodes in Supplementary 

Figure S3.2B).  

 

Figure S 3.2 Overview of the S2B method 
(A) Human interactome network construction. A global interactome network is constructed using physical 
protein interaction (PPI) data. Seeds of Disease A and B are identified using gene-disease association data. 
(B) Specific Betweenness Count. The S2B method exploits a novel version of Betweenness centrality 
measure that counts the number of times a node is involved in a shortest path linking Disease A to Disease 
B seeds. Shortest paths longer than the network average path length are excluded to avoid the influence of 
loosely related proteins (yellow nodes). (C) Seed filtering. In order to improve S2B performance, genes 
associated simultaneously to both diseases are discarded. (D) Specificity scores (SS). The S2B method 
includes two specificity scores derived from two types of randomizations that measure how many times a 
node has a higher specific S2B in the original interactome than in randomized networks. The first 
randomization consist on shuffling the identity of seeds while preserving network structure (1D). In the 
second, all network edges are shuffled maintaining the degree of nodes in the network (2D). (E) S2B 
candidates selection. First, S2B is normalized by dividing it by the number of shortest paths, shorter than 
the average path length, linking seeds in the network. Then, the S2B threshold is defined as the point at 
which ranked S2B decrease rate shifts upwards (described in methods). Final S2B candidates are those 
proteins that have both SS higher than 0.90 and overcome the S2B threshold. 

 

Proteins associated to both diseases are also discarded as these proteins, by 

definition, belong to the disease modules overlap (Supplementary Figure S3.2C). 

Therefore, shortest paths starting from these proteins diverge from the overlap, 

increasing the chances of crossing with other shortest paths outside the overlap 

region. A second layer of specificity is introduced by evaluating if some nodes have 

high specific S2B just because they are very central in the network. To detect these 

Edges shuffling Seeds shuffling 

TO: 
FROM: 

FROM: 
TO: 

PPI 

 Disease A seed 

Node degree 

S
2
B
 
s
c
o
r
e
 

0 

S2
B 

sc
or

e 
S2B threshold 

100x 

 Disease B seed 
Common seed 

S2B Candidate 
Discarded node 

A B C 

D E 



Chapter 3: S2B Specific-Specific Betweenness 

 

M.L. García-Vaquero, 2022 115 

nodes, S2B is recomputed in randomized networks (Supplementary Figure S3.2D). 

If random S2B values have similar or higher values than the original S2B, then the 

node is not specifically linking the two sets of seeds. Although these nonspecific 

nodes can be part of the disease module overlap, they would probably have high 

S2B for many different diseases or if the seeds were random sets of proteins. 

Specificity Scores (SS) are measured as the fraction of randomized networks yielding 

lower S2B when compared with the original network. Two sorts of network 

randomization are employed, either by randomly permuting seed protein identity or by 

shuffling network edges maintaining node degree (number of incident edges). The first 

method allow us to ask if nodes with high S2B are specific for the seeds used, while 

the second method asks if high S2B values are specific for particular pathways in the 

network.  

 

To enhance the comparability of S2B values across different networks or input 

seed sets, we compute a normalized S2B that results from dividing S2B values by the 

total number of shortest paths between seed nodes smaller than the average path 

length. During the method development we observed that the distribution pattern of 

S2B across the nodes in the network is invariant. If S2B are plotted in decreasing 

order, an L-shape is observed (Supplementary Figure S3.2E). This means that 

there is a small fraction of nodes with high S2B while most of the network nodes have 

very small scores. We define an S2B threshold that divides the L-shaped curve in two 

parts, finding the point that is closest to the origin of the plot (described in methods). 

To the left of that point we find the set of nodes in the network that accumulate the 

highest S2B. S2B candidates are required to have both SS higher than 0.90 and a 

S2B higher than the S2B threshold (orange nodes in Supplementary Figure S3.2E). 

 

Identification of common Motor Neuron Disease genes using S2B To 

evaluate the potential of application of the S2B method, we decided to focus on the 

Motor Neuron Diseases (MND) Amyotrophic Lateral Sclerosis (ALS) and Spinal 

Muscular Atrophy (SMA) as a case-study. There are numerous ALS and SMA Disease 

Genes (DG), known to be involved in closely related functions. The genotypic and 

phenotypic similarities between MND suggest that the ALS and SMA disease 

modules overlap. The S2B method could therefore help to further define the MND 
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molecular landscape and possibly identify key elements responsible for triggering MN 

degeneration.  

 

The first step of the S2B method is to map known MND-DGs (seeds) onto 

interaction networks (Supplementary Data S3.1). Considering that different 

networks are currently available for the human interactome, we first began by 

assessing how S2B predictions can be influenced by the source type and quality of 

the interaction data used. Thus, the S2B method was applied to human protein 

interaction networks from two different origins. The APID (Agile Protein Interaction 

Dataserver) repository (Alonso-Lopez et al., 2016) gathers protein interactions 

reported in the literature, while the HuRI (Human Reference Protein Interactome 

Mapping Project) database is the result of unbiased large scale screens for binary 

interactions between human proteins (Rolland et al., 2014; Rual et al., 2005; 

Venkatesan et al., 2009; Yang et al., 2016; Yu et al., 2011). Literature-based protein 

interaction networks are more densely connected around proteins of biomedical 

interest, while large scale experimental techniques may fail to detect interactions 

between certain types of proteins, such as membrane proteins (Brito and Andrews, 

2011). Both kinds of biases may condition S2B candidate selection. In the case of 

APID interaction data, three networks with increasing degree of confidence were 

assembled by only including interactions described in a minimum of two (APID2), 

three (APID3) or four (APID4) independent experiments. We compared the fraction of 

common seeds and S2B candidates among the four networks, taking into account 

the different network properties and intersections (Supplementary Figure S3.3).  
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Figure S 3.3 Impact of network characteristics on S2B method predictions 
Four protein interaction networks were constructed using different source and quality data. HuRI is 
constructed with unbiased high throughput-derived binary interactions whereas APID networks combine 
literature-derived and experimentally validated data. APID2, APID3 and APID4 include interactions 
described in a minimum of two, three and four independent experiments, respectively. (A) Intersection of 
nodes between networks. (B) Intersection of edges between networks. (C) Intersection of mapped ALS 
and SMA DGs between networks. DGs associated to ALS and SMA simultaneously were discarded. (D) 
Fraction of S2B candidates in common among input interaction networks and according to the specificity 
threshold used. The fraction of common S2B candidates among networks was computed using the 
smallest network candidate list as a reference. (E) Intersection between S2B candidates obtained using 
APID3, HuRI or the merged network APID3HuRI. The median rank of the S2B candidates found only in 
APID3 or HuRI were compared against those simultaneously selected using the APID3HuRI network. 

 

APID networks of higher confidence are completely contained in APID 

networks of less quality (Supplementary Figure S3.3A-B). The intersection between 

APID networks and HuRI is high in terms of proteins but low when edges are 

considered, which reflects the dissimilarities between different approaches for PPI 

detection. The presence of a higher number of MND-DGs in APID versus the HuRI 

network (Supplementary Figure S3.3C) is in agreement with the underlying network 

generation procedures – literature based for APID versus unbiased screening for 

HuRI. 

1715

4804

2682
1611

2698

667945

APID2

APID3

APID4

HuRI

Total: 13407

Total: 9764

Total: 7486

Total: 8131
49982

5043

19220
14621

57553

649818

APID2

APID3

APID4

HuRI

Total: 97904

Total: 39533

Total: 24263

Total: 56492

69 | 19

17 | 9
21 | 5

APID2

APID3

APID4

HuRI

Total: 221 | 55

Total: 183 | 46

Total: 158 | 35

Total: 116 | 20

DisGeNET

and OMIM
46 | 20

10 | 0

89 | 168 | 217 | 4

ALS genes | SMA genes

25

APID3

Total: 232

85

14
103 59

56
HuRI

APID3 HuRI

Total: 158Total: 142

[233.88]

[144.50]

[209.65]

[143.29]

[Median S2B rank]

0.0

0.2

0.4

0.6

0.8

APID2 / HURI APID3 / HURI APID4 / HURI APID2 / APID3 APID3 / APID4

Fr
ac

tio
n 

of
 c

om
m

on
 S

2B
 c

an
di

da
te

s

Specificity 
 threshold 

0
0.50
0.90
0.95
0.99

0.0

0.2

0.4

0.6

0.8

APID2 / HURI APID3 / HURI APID4 / HURI APID2 / APID3 APID3 / APID4

Fr
ac

tio
n 

of
 c

om
m

on
 S

2B
 c

an
di

da
te

s

Specificity 
 threshold 

0
0.50
0.90
0.95
0.99

APID3/HuRIAPID2/HuRI APID4/HuRI APID2/APID3 APID3/APID4

A B C

D E0.8

F
ra

c
ti
o
n
 o

f 
c
o
m

m
o
n
 S

2
B

 c
a
n
d
id

a
te

s

F
ra

c
ti
o
n
 o

f 
c
o
m

m
o
n
 S

2
B

 c
a
n
d
id

a
te

s

0.6

0.4

0.2

0.0

Total: 277 | 75



Chapter 3: S2B Specific-Specific Betweenness 

 

M.L. García-Vaquero, 2022 118 

As expected, the increase on S2B Specificity threshold always induces a 

decrease on the fraction of S2B candidates common to the compared networks 

(Supplementary Figure S3.3D). S2B candidates may differ between networks 

because the input lists of MND-DGs vary between networks. Likewise, different 

nodes and edges may reroute shortest paths between disease proteins. Even if for 

some nodes the shortest paths are conserved across networks, changes in one 

network context may lower specificity scores and change candidate selection.  

 

The APID2/APID3 and APID3/APID4 network pairs display the highest number 

of common candidate genes in the absence of a specificity threshold 

(Supplementary Figure S3.3D). Interestingly, the APID3/APID4 overlap is more 

robust to increasing specificity thresholds, likely reflecting the greater interaction 

quality of the underlying networks. Likewise, despite of the intrinsic dissimilarities 

between the HuRI and APID networks, the fraction of HuRI S2B candidates in 

common with APID increases with interaction quality for all specificity thresholds 

(Supplementary Figure S3.3D). These results suggest that the removal of less 

reliable interactions has a positive impact on the S2B method capacity to identify the 

best candidates. On the other hand, higher quality networks are smaller, leading to 

lower number of mapped DGs (Supplementary Figure S3.3C) and the consequent 

loss of input information for the method. 

 

To maximize global interactome and DG coverage while avoiding poor quality 

interactions, we opted to merge HuRI and APID3 networks for subsequent analysis. 

Moreover, the sizes of APID3 and HuRI networks are more similar, which allows a 

balanced mix of data derived from high-throughput experiments and literature 

knowledge. The S2B method applied to 197 ALS and 48 SMA DGs within the 

APID3HuRI network returned 232 candidate proteins potentially related with both 

diseases simultaneously (Supplementary Data S3.2). 82% of the S2B candidates 

identified with APID3 alone are also found with the merged network APID3HuRI 

(Supplementary Figure S3.3E). Though APID3HuRI candidates captured only 46% 

of the ones obtained with HuRI alone, the S2B candidates only identified in HuRI or 

APID3 separately have lower median S2B scores than those found simultaneously in 

APID3HuRI. Therefore, the use of a combined network returns the most robust 
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candidates of the individual network analysis. Additionally, APID3HuRI also identifies 

new S2B candidates (Supplementary Figure S3.3E), showing that the combination 

of both networks produced different shortest paths that uncovered possibly relevant 

proteins. 

 

S2B candidates are associated with related diseases According to our 

hypotheis, S2B candidates may be causal, modifiers or directly involved in the 

phenotypes common to both diseases. It is then logical to expect that some of these 

candidates may also be associated with other diseases that share phenotypic fetures 

or affected pathways. According to the DisGenet database, 146 out of the 232 S2B 

MND candidates are also associated with at least one disease or pathological 

phenotype (gene-disease associations supported only by text mining were 

discarded). This set of candidates is actually statistically enriched in associations with 

61 diseases (Hypergeometric test, FDR<0.05, complete list in Supplementary Data 

S3.5). The disease enrichment is dominated by 27 cancer related conditions. This 

may be explained by an intrinsic bias in gene-disease association databases, but also 

by our previous observation that candidate proteins are enriched in cancer related 

processes like DNA repair and cell cycle. More interestingly, S2B candidates are 

enriched in 6 neurological, 2 mental and 3 muscular disorders. This prompted us to 

analyze the interactions of candidate genes and these three types of disease by 

building a bipartite network with two distinct types of nodes (genes and diseases), 

where edges only connect nodes of different types (Supplementary Figure S3.4). 

 

Out of a total of 232 S2B candidates, 93 have at least one association with 

neurological, mental or muscular diseases. In 1000 random sets of 232 genes from 

the interactome (including 5 SMA seeds, 19 ALS seeds and 2 genes associated with 

both ALS and SMA, mimicking the composition of the S2B candidate set) the number 

of genes associated with these types of disease was always significantly lower lower 

than this (median of 57, 95% confidence interval: [45, 69]). This indicates that S2B 

candidates are significantly enriched (p<0.001) in genes associated with neurological, 

mental and muscular diseases. 
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Mental disorders present the highest number of S2B gene-associations 

(Schizofrenia (28), Depressive disorders (21) and Bipolar disorder (14)). A large 

diversity of neurological diseases is represented in the network, including 

neurovascular related (Brain Ischemia (11), Cerebral Hemorrage (7), Cerebral 

Infarction (6)) and neurodegenerative diseases (Parkinson(11), Alzheimer (8), 

Cerebellar Ataxia (8), Demyelinating diseases (5), Spinocerebellar Ataxia (4), Ceroid 

Lipofuscinosis (3) and Pontocerebellar Hypoplasia (3), besides ALS (12) and SMA (3)). 

Muscular related disorders are represented by Muscular Atrophy (10), Muscular 

Dystrophy (6), Limb-girdle Muscular Dystrophy (4) and Myopathy (4). Gene-wise, APP 

(11), GSK3B (9), MTOR (9), BAX (7), DAG1 (7), ERCC2 (7) and SIRT1 (7) have the 

higher number of disease associations. More interestingly, BAG3, CCT5, DAG1, 

GSK3B, HNRNPA1, HSP1B, MTOR and OPTN are simultaneously associated with 

neurological and muscular diseases. 

 

The association of a high number of S2B candidates with other diseases 

related with ALS and SMA is an independent observation that supports the ability of 

the S2B method to identify functionally relevant genes in disease module overlaps.  
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Figure S 3.4 S2B candidate-disease interactions 
Diseases associated with S2B candidate proteins (gray nodes) were retrieved from the DisGenet database. 
Only disease associations with a score higher than 0.08 were used, which discards association based 
solely on text-mining evidence. All retrieved disease associations are available in Supplementary File S6. 
Only associations with Mental (orange nodes), Neurological (red nodes) or Muscular (green nodes) related 
diseases are represented. Some disease denominations were manually edited to merge subtypes of the 
same disease. Only diseases associated with at least 3 S2B candidates were included in the network.  
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3.7  Discussion  
 

S2B is built upon the hypothesis that disease genes tend to interact in cellular 

networks within disease modules and that related diseases have an overlap between 

their modules. The frequency with wich nodes belong to shortest paths between 

nodes associated with two related diseases (cDGs) allows the detection of specific 

nodes bridging disease modules. S2B performance with artificial modules shows that 

nodes with high S2B have a high likelihood of belonging to the overlap between 

modules. Moreover, this predictive capacity is robust to changes in module topology, 

to the quantity and quality of the input DGs and network interactions. Our results with 

artificial modules also support the use of S2B to predict the overlap between network 

modules of varied type, such as functional modules or context-specific subnetworks. 

In the artificial module analysis, we generated and controlled the complete 

composition of each module, and selected for analysis pairs of modules with overlap. 

In this selection, we did not control for the presence of network hubs in the overlap. 

For this reason, applying the specificity thresholds in the analysis of artificial modules 

should not bias the method performance. Concordantly, it can be observed in 

Supplementary Figure S3.5 that proteins with higher S2B values are not biased to 

pass the filters for both specificity scores. 

 

Network hubs can indeed be part of the overlap between real disease modules 

and have a significant role connecting the mechanisms of both diseases. However, 

they are not interesting candidates for follow up studies, since they tend to be 

unspecific and simultaneously related with many different cellular processes. 

Therefore, specificity score filtering is important for the analysis of real disease seed 

sets.  

 

In the study of ALS and SMA, S2B successfully returned candidates involved in 

processes known to be part of motor neuron degeneration mechanisms, such as 

apoptosis, DNA repair, RNA processing, protein transport or cytoskeleton 

organization (Gama-Carvalho et al., 2017). More specifically, S2B candidates were 

enriched for DGs simultaneously associated with ALS and SMA through different 

information sources and not used as input for S2B predictions. 
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Some of the cliques and clusters in the candidate interaction network were 

involved in several of these processes, which suggests that disease proteins tend to 

be located at the interface between functional modules and corroborates that disease 

modules do not overlap perfectly with functional and topological network modules 

(Barabasi, 2007; Ghiassian et al., 2015). Many of the S2B candidates were already 

associated with multiple diseases, some of them closely related with ALS and SMA. 

Together with the observation that most candidates interact in a densely connected 

network, these results reinforce the hypothesis that DGs tend to interact with other 

DGs, specially if the two diseases are related through similar causes or phenotypes 

(Goh et al., 2007). 

 

S2B can be applied to uncover common molecular mechanisms shared by 

various diseases. Its discovery potential can be amplified through the use of different 

networks types, such as signaling and gene regulatory networks, and by integrating 

genome scale molecular data characterizing healthy and disease states. In summary, 

this work provides a novel approach to predict the overlaps between network 

modules, which can uncover disease mechanisms through network exploration for 

pathologies with phenotypic similarity. Its application to the motor neuron diseases 

SMA and ALS identified several novel genes as potentially involved in critical 

pathomechanisms, opening new hypothesis for experimental exploration. 
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3.8  Supplementary Data 
 

R code and input data to reproduce BioInt-U method is available in 

 https://github.com/GamaPintoLab/S2B 

Supplementary data files are available in 

 https://github.com/GamaPintoLab/MLG_PhDThesis_SupData 

 
Supplementary Data S3: 

Sheet.1 List of ALS and SMA seeds 

Sheet 2 List of S2B candidates 

Sheet 3 List of enriched GO terms 

Sheet 4 List of enriched GO groups 

Sheet 5 List of enriched diseases 

Sheet 6 List of disease-gene associations 

Sheet 7 Composition of cliques 

Sheet 8 Composition of clusters 
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4  Analysis of pre-symptomatic Drosophila 

models for ALS and SMA reveals 

convergent impact on functional protein 

complexes linked to neuro-muscular 

degeneration 
 

 

Data presented in this chapter was included in the following work: 
 

Garcia-Vaquero M.L., M Heim., Flix B., Pereira M., Palin L., Marques T.M., 

Pinto F.R., De Las Rivas J., Voigt A., Besse F., and Gama-Carvalho M. (2022). 

Analysis of pre-symptomatic Drosophila models for ALS and SMA reveals convergent 

impact on functional protein complexes linked to neuro-muscular degeneration. Pre-

print in bioRxiv, under revision. 

 

Author contributions: 
 

MG-C, AV, FB, JW, JS and JDLR conceptualized the research approach and 

supervised the research work; BF developed the fly-lines and generated the RNAi 

samples; MH generated and characterized the GFP-tagged lines and did the RNA-IP 

assays; MP and TMM did the RNA-seq data analysis; LP assessed the functionality 

of GFP-tagged lines; MG-V developed the methods and performed the network-

based analysis; FRP contributed to the conceptualization and development of the 

network analysis. MG-C, AV, FB and MG-V wrote the manuscript draft. 
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4.1 Abstract 
 

Background: Spinal Muscular Atrophy and Amyotrophic Lateral Sclerosis 

share both phenotypic and molecular commonalities, including the fact that they can 

be caused by mutations in genes encoding proteins involved in RNA metabolism, 

namely Smn, TDP-43 and Fus. Although this suggests the existence of common 

disease mechanisms, there is currently no model to explain the converging 

motoneuron dysfunction caused by changes in the expression of these ubiquitous 

genes.  

Methods: In this work we generated a parallel set of Drosophila models for 

adult-onset RNAi and tagged neuronal expression of the orthologues of SMN1, 

TARDBP and FUS (Smn, TBPH and Caz, respectively). We profiled nuclear and 

cytoplasmic bound mRNAs using a RIP-seq approach and characterized the 

transcriptome of the RNAi models by RNA-seq. To unravel the mechanisms 

underlying the common functional impact of these proteins on neuronal cells, we 

devised a computational approach based on the construction of a tissue-specific 

library of protein functional modules, selected by an overall impact score measuring 

the estimated extent of perturbation caused by each gene knockdown. 

Results: Our integrative approach revealed that although each disease-

associated gene regulates a poorly overlapping set of transcripts, they have a 

concerted effect on a specific subset of protein functional modules, acting through 

distinct targets. Most strikingly, functional annotation reveals these modules to be 

involved in critical cellular pathways for neurons and in particular, in neuromuscular 

junction function. Furthermore, selected modules were found to be significantly 

enriched in orthologues of human genes linked to neuronal disease. 

Conclusions: This work provides a new model explaining how mutations in 

SMA and ALS-associated disease genes linked to RNA metabolism functionally 

converge to cause motoneuron dysfunction. The critical functional modules identified 

represent interesting biomarkers and therapeutic targets given their identification in 

asymptomatic disease models.  
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4.2  Background 
 

Motor neuron diseases (MNDs) are characterized by a progressive and 

selective degeneration and loss of motor neurons accompanied by an atrophy of 

innervated muscles. Although MNDs encompass heterogeneous groups of 

pathologies with different onset and genetic origins, a number of MND-causing 

mutations have been identified in RNA-associated proteins, leading to a model in 

which alteration of RNA metabolism may be a key, and potentially common, driver of 

MND pathogenesis (Achsel et al., 2013; Gama-Carvalho et al., 2017; Ling et al., 

2013; Taylor et al., 2016; Zaepfel and Rothstein, 2021). This has become 

particularly clear in the context of two well-studied pathologies: spinal muscular 

atrophy (SMA) and amyotrophic lateral sclerosis (ALS), which have both been linked 

to mutations in conserved RNA binding proteins (RBPs). SMA, the most common 

early-onset degenerative neuromuscular disease, is caused in 95% of patients by a 

loss of the SMN1 gene, which encodes a protein with chaperone functions essential 

for the assembly of both nuclear and cytoplasmic ribonucleoprotein (RNP) complexes 

(Li et al., 2014; Price et al., 2018). The best-characterized role of SMN is to promote 

the assembly of spliceosomal small nuclear ribonucleoprotein complexes (snRNPs) 

(Boulisfane et al., 2011; Workman et al., 2012), but it has also been involved in the 

assembly of other nuclear sRNPs required for 3’end processing (Tisdale et al., 2013), 

as well as cytoplasmic RNP complexes essential for long-distance mRNA transport 

(Donlin-Asp et al., 2017, 2016). Consistent with these functions, and with additional 

reported roles in transcription regulation, inactivation of Smn was shown to result in 

alternative splicing defects and defective axonal RNA targeting (Fallini et al., 2016, 

2011) To date, how these changes in gene expression account for the full spectrum 

of symptoms observed in SMA patients and disease models remains unclear. ALS, 

on the other hand, is the most-common adult-onset MND and has mostly sporadic 

origins. Remarkably, however, disease-causing mutations in two genes encoding 

RNA binding proteins, Fus and TDP-43 (alias gene symbol of TARDBP), have been 

identified in both genetic and sporadic forms of the disease (Da Cruz and Cleveland, 

2011; Gama-Carvalho et al., 2017). These proteins shuttle between the nucleus and 

the cytoplasm and regulate different aspects of RNA metabolism, ranging from 

transcription and pre-mRNA splicing to mRNA stability and axonal targeting (Birsa et 
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al., 2020; Ederle and Dormann, 2017; Ratti and Buratti, 2016). ALS-causing 

mutations were described to have pleiotropic consequences, compromising both the 

nuclear and cytoplasmic functions of FUS and TDP-43, and resulting in their 

accumulation into non-functional cytoplasmic inclusions (Ling et al., 2013; Zbinden 

et al., 2020). Whether ALS pathogenesis primarily originates from a depletion of the 

nuclear pool of these RBPs, or rather from a toxic effect of cytoplasmic aggregates, 

has remained unclear (Fernandes et al., 2018; Li et al., 2013). Thus, SMA and ALS 

are not only connected by pathogenic commonalities (Bowerman et al., 2018), but 

also appear to both originate from alterations in RBP-mediated regulatory 

mechanisms. Further strengthening the possibility that these two MNDs may be 

molecularly connected, recent studies have suggested that SMN, FUS and TDP-43 

belong to common molecular complexes and also exhibit functional interactions 

(Cacciottolo et al., 2019; Chi et al., 2018; Groen et al., 2013; Perera et al., 2016; 

Sun et al., 2015; Tsuiji et al., 2013; Yamazaki et al., 2012). Together, these results 

have raised the hypothesis that SMN, FUS and TDP-43 may control common 

transcriptional and/or post-transcriptional regulatory steps, the alteration of which 

may underlie MND progression (Achsel et al., 2013). Comparative transcriptomic 

studies performed so far, however, did not clearly identify classes of transcripts that 

may be co-regulated by the three MND RBPs (Gama-Carvalho et al., 2017; Kline et 

al., 2017; Lagier-Tourenne et al., 2012), letting open the question of common 

molecular regulatory mechanisms and targets.  

 

A major difficulty in comparing available transcriptomic studies is that datasets 

were obtained from heterogeneous, and often late-stage or post-mortem samples, 

preventing robust comparisons and identification of direct vs. indirect targets. Another 

challenge associated with the identification of relevant regulated mRNAs is that SMN, 

FUS and TDP-43 are multifunctional and may exhibit distinct sets of target RNAs in 

the nucleus and the cytoplasm, raising the need for compartment-specific studies. To 

overcome previous limitations and unambiguously assess the existence of transcripts 

commonly regulated by SMN, FUS and TDP-43, we decided in this study to 

systematically identify the direct and indirect neuronal RNA targets of these proteins. 

For this purpose, we defined a strategy involving the establishment of parallel 

schemes for tagged-protein expression to perform RNP complex purification, 
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alongside with gene inactivation, using Drosophila, a model organism that expresses 

functional orthologs of SMN (Smn), FUS (Caz) and TDP-43 (TBPH).  

 

Highlighting the conservation of protein functions from fly to human, expression 

of human FUS and TDP-43 proteins was shown to rescue the lethality induced upon 

inactivation of the corresponding fly genes (Wang and Marcotte, 2010). Furthermore, 

Drosophila models based on expression of mutant human or Drosophila proteins 

have been previously established, that recapitulate the hallmarks of SMA and ALS, in 

particular motor neuron disabilities and degeneration (Aquilina and Cauchi, 2018; 

Liguori et al., 2021; McGurk et al., 2015; Olesnicky and Wright, 2018; Spring et al., 

2019; Voigt et al., 2010). Several of these models have been successfully used for 

large-scale screening and discovery of genetic modifiers (Chang et al., 2008; Kankel 

et al., 2020; Liguori et al., 2021). 

 

Our study was performed on pre-symptomatic flies, starting from head 

samples. RNA immunoprecipitation sequencing (RIP-seq) experiments were 

performed to identify the cytoplasmic and nuclear transcripts bound by each protein. 

These assays were complemented with gene-specific down-regulation followed by 

RNA sequencing (RNA-seq) to identify transcripts with altered expression levels 

and/or splicing patterns. The RIP-seq analysis showed that Smn, Caz and TBPH 

proteins bind to largely distinct sets of RNA targets, whether in the nucleus or in the 

cytoplasm. The steady state level of this group of transcripts was not particularly 

affected by the knockdown of Smn, Caz and TBPH, which collectively altered the 

expression and/or splicing profile of a limited, albeit significant set of common 

transcripts. However, the functional enrichment analysis of the differentially expressed 

genes did not reveal any consistent signatures.  

 

These observations suggested that the common physiological processes 

regulated by the three proteins may be altered at a higher order level. To unravel the 

functional relationship between the transcripts regulated by Smn, Caz and TBPH, we 

designed a strategy to map functionally collaborating protein modules in the context 

of the neuronal interactome. This approach revealed that despite the limited 

coherence of the transcripts affected by the knockdown of the three proteins, Smn, 
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Caz and TBPH converge on the regulation of common biological processes. Among 

these, we identify seven functional units directly implicated in neuro-muscular junction 

(NMJ) development. Noteworthy, although these modules were selected based on 

the joint degree of impact from all the knockdowns, they were found to be enriched in 

transcripts identified in RIP-seq experiments as bound by Smn, Caz and/or TBPH, as 

well as in proteins whose orthologs have been associated with MNDs.  In summary, 

our work provides a new conceptual model to explain how changes in three 

ubiquitous proteins involved in RNA metabolism converge into molecular functions 

critical for MN processes, thereby leading to overlapping disease phenotypes.  
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4.3  Methods 
 

Fly lines The fly stocks used were obtained from the Bloomington Drosophila 

Stock Center (BDSC) and the Vienna Drosophila Resource Center (VDRC), or were 

generated using the Drosophila Embryo Injection Service form BestGene 

(http://www.thebestgene.com). BDSC stocks #39014 (expressing shRNA targeting 

TBPH), #55158 (expressing shRNA targeting Smn) and #32990 (expressing shRNA 

targeting caz) were used for the transcriptome profiling assays along with the VDRC 

strain #13673 (expressing dsRNA targeting always early). Transgenic lines used for 

neuronal expression of GFP-tagged variants of Smn (CG16725, fly Smn1), TBPH 

(CG10327, fly TDP-43), caz (CG3606, fly FUS) were generated by site directed 

integration into the same attP landing site (VK00013, BDSC#9732). 

Smn, Caz and TBPH coding sequences were PCR-amplified from ESTs 

LD23602, UASt-Caz plasmid (gift from C. Thömmes) and EST GH09868, 

respectively, using the primers listed in Table 4.1. Smn and Caz PCR products were 

subcloned into pENTR-D/TOPO vector (Life Technologies), fully sequenced, and 

recombined into a pUASt-EGFP-attB Gateway destination vector to express N-

terminally-tagged proteins. The TBPH PCR product was double digested with NotI 

and XhoI and ligated into a NotI/XhoI digested pUASt-EGFP-attB plasmid (gift from S. 

Luschnig).  

 
Table 4.1 Primer sequences 

 
Primer name Sequence (5’-3’) 

Smn_fwd CACCATGTCCGACGAGACGAACG 

Smn_rev GATGGAATTACTTCTTGGGTGTC 

Caz fwd CACCATGGAACGTGGCGGTTATGGTG 

Caz_rev TTAATATGGTCTCGAGCGCATGC 

NotI_TBPH-fwd AAAAGCGGCCGCCATGGATTTCGTTCAAG 

XhoI_TBPH_rev AAAACTCGAGTTAAAGAAAGTTTGACTTCTCCGC 
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Fly crosses dsRNA expression was induced using the GeneSwitch system. 

Mifepristone was dissolved in 80% ethanol and pipetted on the surface of regular fly 

food (final concentration of 0,1 mg/cm2). Vehicle-only treated fly vials served as 

control. Vials were prepared 24 hours prior to use to allow evaporation of ethanol. 

Crosses performed for knock-down analyses were as follows: virgins carrying the 

ubiquitous daughterless GeneSwitch driver (daGS) were crossed with males carrying 

the UAS:shRNA constructs. In the progeny, male daGS/UAS:shRNA flies were 

collected one day post eclosion (1 dpe) and exposed to food containing mifepristone 

(replaced every 2 days). After 10 days, flies were collected, snap frozen in liquid 

nitrogen and stored at -80°C until further use.  

For RIP-seq experiments, males carrying UASt-GFP-fusions (or sole EGFP) 

were crossed en masse with elav-Gal4; tub-Gal80ts virgins. elav-Gal4/Y/+; tub-

Gal80ts/UAS-GFP-Smn (or TBPH or Caz) flies were raised at 18°C, switched to 29°C 

upon eclosion and aged for 5 to 7 days before being collected in 50 mL Falcon tubes 

and snap frozen. 

 

Immuno-histochemistry and Western-blotting For analysis of GFP-fusion 

distribution, brains were dissected in PBS and immuno-stained using anti-GFP 

antibodies (1:1,000; Molecular Probes, A-11122), as described previously 

(Vijayakumar et al., 2019). Samples were imaged on an inverted Zeiss LSM710 

confocal microscope. For analysis of GFP-fusion expression, heads were smashed 

into RIPA buffer (15 heads for 100 mL RIPA) and lysates directly supplemented with 

SDS loading buffer (without any centrifugation). Total protein extracts or RIP extracts 

were subjected to SDS Page electrophoresis, blotted to PVDF membranes, and 

probed with the following primary antibodies: rabbit anti-GFP (1:2,500; #TP-401; 

Torey Pines); mouse anti-Tubulin (1:5,000; DM1A clone; Sigma) and mouse anti-

Lamin (1:2,000; ADL 67.10 and ADL 84.12 clones; DHSB). 

 

RNA Immunoprecipitation assays Falcon tubes half-filled with frozen flies 

were chilled in liquid nitrogen, extensively vortexed so as to separate heads, legs and 

wings from the main body. Head fractions were collected at 4°C, through sieving on 

630 µm and 400µm sieves stacked on top of each other. 1 mL of heads was used 

per condition, except for GFP-Smn, where 2 mL of heads were used. For the GFP 
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control, 500 µL of heads were mixed with 500 µL of w1118 heads so as to normalize 

the amount of GFP proteins present in the initial lysate. 

Adult Drosophila heads were grinded into powder with liquid nitrogen pre-

chilled mortars and pestles. The powder was then transferred to a prechilled 15 mL 

glass Dounce Tissue Grinder and homogenized in 8.5 mL of Lysis buffer (20mM 

Hepes pH 8, 125mM KCl, 4mM MgCl2, 0.05% NP40, 1mM dithoithreitol (DTT), 1:100 

Halt™ Protease & Phosphatase Inhibitor Cocktail, Thermo Scientific, 1:200 

RNasOUT™, Invitrogen). Cuticle debris were eliminated by two consecutive 

centrifugations at 100 g for 5 minutes at 4°C. Nuclear and cytoplasmic fractions were 

then separated by centrifugation at 900 g for 10 minutes at 4°C. The supernatant 

(cytoplasmic fraction) was further cleared by two consecutive centrifugations at 

16,000 g for 20 minutes. The pellet (nuclear fraction) was washed with 1 mL of 

Sucrose buffer (20 mM Tris pH 7.65, 60 mM NaCl, 15 mM KCl, 0.34 M Sucrose, 1 

mM dithoithreitol (DTT), 1:100 Halt™ Protease & Phosphatase Inhibitor Cocktail, 

Thermo Scientific, 1:200 RNasOUT™, Invitrogen), centrifuged at 900 g for 10 minutes 

at 4°C and resuspended in 2 mL of Sucrose buffer. 800 µL of High salt buffer (20 mM 

Tris pH 7.65, 0.2 mM EDTA, 25% Glycerol, 900 mM NaCl, 1.5 mM MgCl2, 1 mM 

dithoithreitol (DTT), 1:100 Halt™ Protease & Phosphatase Inhibitor Cocktail, Thermo 

Scientific, 1:200 RNasOUT™, Invitrogen) were then added to reach a final 

concentration of 300 mM NaCl. After 30 minutes incubation on ice, the nuclear 

fraction was supplemented with 4.7 mL of Sucrose buffer to reach a concentration of 

150 mM NaCl and with CaCl2 to reach a 1 mM CaCl2 concentration. RNAse free 

DNase I (Ambion™, Invitrogen) was added (0.1 mM final concentration) and the 

sample was incubated for 15 minutes at 37°C with gentle agitation. 4 mM (final) EDTA 

was added to stop the reaction and the digested fraction was centrifuged at 16,000 g 

for 20 minutes (4°C) to obtain soluble (supernatant; used for immuno-precipitation) 

and insoluble (pellet) fractions. 

Cytoplasmic and nuclear fractions were incubated for 30 minutes at 4°C under 

agitation with 120 µL of control agarose beads (ChromoTek, Germany). Pre-cleared 

lysates were collected by a centrifuging 2 min at 400 g (4°C). Immuno-precipitations 

were performed by addition of 120 µL of GFP-Trap®_A beads (ChromoTek, 

Germany) to each fraction and incubation on a rotator for 1.5 hours at 4°C. Tubes 

were then centrifuged for 2 minutes at 2,000 rpm (4°C) and the unbound fractions 
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(supernatants) collected. Beads were washed 5 times with Lysis buffer, resuspended 

in 100 µL of Lysis buffer supplemented with 30 µg of proteinase K (Ambion) and 

incubated at 55°C for 30 minutes. Eluates (bound fractions) were then recovered and 

further processed. At least three independent immune-precipitations were performed 

for each condition. 

 

RNA extraction, Library preparation and RNA sequencing RNA from IP 

eluates or frozen fly heads (50 flies aprox/genotype) was extracted using Trizol 

according to the manufacturer’s instructions.  RIP-Seq libraries were prepared in 

parallel and sequenced at the EMBL Genomics core facility. Briefly, libraries were 

prepared using the non-strand-specific poly(A)+ RNA Smart-Seq2 protocol (Nextera 

XT part). Following quality control, cDNA libraries were multiplexed and sequenced 

through single-end 50 bp sequencing (HiSeq 2000, Illumina). 

RNA-seq libraries for RNAi analysis were prepared and sequenced at the 

Genomics Facility, Interdisziplinäres Zentrum für Klinische Forschung (IZKF), RWTH 

Aachen, Germany. Libraries were generated using the Illumina TrueSeqHT library 

protocol and ran on a NextSeq machine with paired-end sequencing and a read 

length of 2x76nt. The 47 raw fastq files of the RNA-seq data generated for this study 

have been submitted to the European Nucleotide Archive under the umbrella project 

FlySMALS, with accession numbers PRJEB42797 and PRJEB42798. 

 

RNA-seq data analysis Following quality assessment using FastQC version 

0.11.5 (https://www.bioinformatics. babraham.ac.uk/projects/fastqc/), all raw 

sequencing data was processed with in-house perl scripts to filter out reads with 

unknown nucleotides, homopolymers with length ≥50 nt or an average Phred score < 

30, and trim the first 10 nucleotides (Amaral et al., 2014). Remaining reads were 

aligned to the BDGP D. melanogaster Release 6 genome assembly build (dos Santos 

et al., 2015) using the STAR aligner version 2.5.0 (Dobin et al., 2013) with the 

following options: –outFilterType BySJout –alignSJoverhangMin 8 –

alignSJDBoverhangMin 5 –alignIntronMax 100000 –outSAMtype BAM 

SortedByCoordinate –twopassMode Basic –outFilterScoreMinOverLread 0 –

outFilterMatchNminOverLread 0 –outFilterMatchNmin 0 –outFilterMultimapNmax 1 –

limitBAMsortRAM 10000000000 –quantMode GeneCounts. Gene counts were 
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determined using the htseq-count function from HTseq (version 0.9.1) in union mode 

and discarding low quality score alignments (–a 10), using the Flybase R6.19 

annotation of gene models for genome assembly BDGP6.  

For RIP-seq data analysis, gene counts were normalized and tested for DE 

using the DESeq2 (Love et al., 2014) package of the Bioconductor project (Huber et 

al., 2015), following removal of genes with less than 10 counts. mRNAs associated 

with each protein were identified by performing a differential expression analysis (DEA) 

for each condition vs the corresponding control pull-down. Transcripts with a positive 

log2 FC and an adjusted p value for DEA lower that 0.05 were considered to be 

bound by the target protein. 

DEA for RNA-Seq gene counts was performed with the limma Bioconductor 

package (Ritchie et al., 2015) using the voom method (Law et al., 2014) to convert 

the read-counts to log2-cpm, with associated weights, for linear modelling. The 

design formula (~ hormone + Cond, where hormone = treated or non-treated and 

Cond = Caz, Smn or Tbph RNAi) was used to consider hormone treatment as a 

batch effect. Differential gene expression analysis was performed by comparing RNAi 

samples for each target protein to control (always early RNAi) samples. Genes 

showing up or down-regulation with an adjusted p value <0.05 were considered to be 

differentially expressed.  

Altered splicing analysis (ASA) was performed on the RNA-seq aligned data 

using rMATS version 4.0.2 (Shen et al., 2014) with flags -t paired --nthread 10 --

readLength 66 --libType fr-firststrand. For the purpose of the downstream analysis, 

the union of all genes showing any kind of altered splicing using the junction count 

and exon count (JCEC) analysis with a FDR <0.05 in the comparison between each 

target gene RNAi versus control RNAi was compiled as a single dataset.  

Normalized RNA-Seq data of adult fly brain tissue was retrieved from FlyAtlas2 

database in November 2020 (www.flyatlas2.org; (Leader et al., 2018)). Neuronal 

transcripts were filtered applying an expression threshold of >1 FPKM (Fragments Per 

Kilobase per Million). This gene set was then used to filter the final gene lists from 

RIP-seq, DEA and ASA. The full universe of 8,921 neuronal genes is annotated in 

Supplementary Data S4.5. Clustering analysis was performed using the heatmap 

function from ggplot2 R package (Wickham, 2016) (default parameters) and 

correlation plots were generated using lattice R package. Intersection analyses of 
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RNA-Seq and RIP-seq datasets were performed using UpSetR and SuperExactTest 

R packages (Gehlenborg, 2019; Wang et al., 2015). 

 

Network analysis and generation of the library of functional modules 

Drosophila physical Protein-Protein Interaction (PPI) data reported at least in one 

experiment was retrieved from APID repository (http://apid.dep.usal.es; (Alonso-

López et al., 2019) in December 2019. The original unspecific network was filtered to 

include only interactions between proteins expressed in adult fly brain tissue as 

described in previous section. The neuronal network was then simplified to remove 

self-loops and isolated proteins using the igraph R package (Csárdi and Nepusz, 

2006). Bioconductor GOfuncR R package was used to evaluate the functional 

enrichment of brain network as compared to the unspecific network - Gene Ontology 

Biological Process, hyper-geometric test, FDR = 0.1 on 1000 randomizations- (Grote, 

2020)). Finally, the functional modules were defined by selecting groups of physically 

interacting proteins annotated under the same enriched term. It should be noted that 

not all the proteins collaborating in the same process must physically interact (e.g., as 

in the case of cell signaling, the membrane receptor does not bind to its downstream 

transcription factor). Based on this, we enabled modules to be formed by non-

connected subnetworks. The isolated clusters were discarded only when the largest 

subnetwork represented more than 90% of the total module. The same protein might 

be annotated with several terms and therefore might be involved in several modules 

simultaneously. Conversely, we are aware that the use of GO data may return 

functionally redundant modules. Prior any further analysis, module redundancy was 

evaluated to check that modules do not exceedingly overlap nor represent redundant 

biological processes. Based on this analysis, a module size from 10 up to 100 

proteins was defined as optimal to minimize redundancy.   



Chapter 4: Transcriptomic characterization of MND Drosophila models 

M.L. García-Vaquero, 2022 138 

4.4  Results 

4.4.1  Caz, Smn and TBPH proteins do not share common mRNA 
targets 

We hypothesized that the existence of shared RNA targets for Caz, Smn and 

TBPH might underlie the observed phenotypic commonalities between SMA and 

ALS. To test this hypothesis, we performed RIP-seq to identify neuronal mRNAs 

present in the RNP complexes formed by each of these proteins in adult Drosophila 

neurons. To facilitate cross-comparisons and ensure reproducible and cell-type 

specific purification, we generated three independent transgenic lines with GFP-

tagged constructs expressed under the control of UAS sequences inserted into the 

same chromosomal position. To specifically characterize the neuronal RNA 

interactome, GFP-fusion proteins were expressed in adult neuronal cells using the 

pan-neuronal elav-GAL4 driver. The ectopic expression of Caz, Smn and TBPH has 

been reported to induce toxicity (Cragnaz et al., 2014; Grice and Liu, 2011; Xia et 

al., 2012). For this reason, we used the TARGET method (McGuire et al., 2003) to 

express GFP-fusion proteins specifically in adult neurons within a limited time window 

(5-7 days post-eclosion). The TARGET system relies on the temperature-sensitive 

GAL80 protein, which inhibits GAL4 at low temperature, enabling temporal regulation 

of UAS constructs. When expressed in neuronal cells, GFP-Caz and GFP-TBPH 

robustly accumulated in the soma, showing a predominant, although not exclusive 

nuclear accumulation (Supplementary Figure S14.A and S4.1C). As expected, 

GFP-Smn was found mainly in the cytoplasm, sometimes accumulating in foci 

(Supplementary Figure S4.1B). Despite the same insertion site and promotor 

sequence, GFP-Smn protein was consistently expressed at lower levels 

(Supplementary Figure S4.1D). 
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Figure 4.1 RIP-Seq identification of mRNA molecules in Caz, Smn and TBPH complexes in adult 
Drosophila neurons 
(A) Schematic representation of the RIP-Seq procedure. GFP-fusion proteins were expressed conditionally 
in the adult nervous system via the Gal4/Gal80/UAS system. Lysates were prepared from heads and 
fractionated into cytoplasmic and nuclear fractions (see Methods). Nuclear proteins were further solubilized 
with high salt buffer and recovered in the nuclear soluble fraction. The cytoplasmic and nuclear soluble 
fractions were used for immuno-precipitation with GFP-trap beads. Co-immunoprecipitated mRNAs were 
extracted and sequenced. (B) Western Blots performed on the different fractions recovered along the RIP 
procedure. Lamin and Tubulin were used as markers of the nuclear and cytoplasmic fractions, respectively. 
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Note that Tubulin is depleted from the nuclear fraction while Lamin is depleted from the cytoplasmic one. 
Also note that GFP-Caz, Smn and TBPH differentially distribute in the nuclear and cytoplasmic fractions. 
(C) Bar graph showing the number of neuronal mRNAs co-immunoprecipitated with Caz, Smn or TBPH 
from cytoplasmic (blue) or nuclear (yellow) lysates. Transcripts present in complexes found in both 
compartments are shown in green. (D) Venn diagrams and corresponding bar graphs showing the overlap 
between the total (top panel), cytoplasmic (middle panel) or nuclear (lower panel) mRNA interactomes of 
Caz, Smn and TBPH. The seven transcripts found in the overlap of the top diagram (“All”) correspond to 
mRNA molecules present in distinct nuclear and cytoplasmic complexes. 

 

Since Caz, Smn and TBPH are multifunctional proteins involved in both nuclear 

and cytoplasmic regulatory functions, we separately characterized their RNA 

interactome in each cellular compartment. For this purpose, cellular fractionations 

were performed prior to independent anti-GFP immunoprecipitations, thus generating 

paired nuclear and cytoplasmic samples (Figure 4.1A). As shown in Figure 4.1B, 

relatively pure nuclear and cytoplasmic fractions were obtained from head lysates and 

GFP-tagged proteins could be efficiently immuno-precipitated from each fraction.  For 

each paired nuclear and cytoplasmic pull-down, co-precipitated RNAs were extracted 

and used to prepare mRNA-seq libraries for single-end Illumina sequencing. Extracts 

from flies expressing GFP were used as control. Three independent replicate datasets 

were generated for each protein, except for GFP-Caz, for which one nuclear pull-

down sample did not pass quality control for library generation. The raw sequencing 

dataset, composed of 23 libraries containing between 17.7 and 64.6 million total 

reads (Supplementary Data S4.1), was submitted to the European Nucleotide 

Archive (ENA) with the study accession code PRJB42798. 

Following quality filtering, alignment to the Drosophila melanogaster reference 

genome and quantification of gene counts, RIP-seq datasets were analyzed to 

identify mRNA molecules enriched in GFP-fusion versus GFP control pull-downs. An 

average of 13,500 genes (>0 counts) were detected across all samples, ranging from 

10,640 to 15,557 genes (Supplementary Data S4.1). As expected, the sequencing 

datasets clustered primarily depending on the nuclear versus cytoplasmic natures of 

the extract, and secondly depending on the protein used for pull-down 

(Supplementary Figure S24.A). DESeq2 (Love et al., 2014) was used to perform 

differential expression analysis (DEA) between each of the six pull-down sample 

groups and the control GFP pull-down. Transcripts displaying positive enrichment 

with an adjusted p value below 0.05 when compared to the control were considered 

as associating with the target protein (Supplementary Data S4.2).  
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Although Caz, Smn and TBPH fusion proteins were expressed specifically in 

neurons via the elav promotor, a certain degree of RNP complex re-association may 

occur in head lysates during the different experimental steps, as previously described 

(Mili and Steitz, 2004). To discard any non-neuronal transcripts that may have co-

precipitated with target proteins, the dataset resulting from the DEA was filtered to 

include only genes with reported expression in the adult fly brain (see Methods), 

corresponding on average to 70% of the enriched transcripts (see Supplementary 

Figure S4.3).  

These analyses revealed that Smn and TBPH associate with a large fraction of 

the neuronal transcriptome (1,708 and 1,754 mRNAs in total, respectively), and that 

most of their identified mRNA targets associate in the cytoplasm rather than in the 

nucleus (Figure 4.1C). A much smaller number (208) of mRNAs were found to 

associate with Caz in the cytoplasm, with 236 mRNAs detected as enriched in the 

pull-downs from nuclear fractions. Although this may partly reflect the higher 

heterogeneity of the Caz pull-down samples (Supplementary Figure S4.2A), it is in 

good agreement with the low abundance of GFP-Caz protein found in the cytoplasm 

compared to GFP-Smn and GFP-TBPH (Figure 4.1B). Of note, the percentage of 

transcripts simultaneously bound by the same protein on both compartments 

averaged only 22%, with TBPH displaying a much larger overlap than Smn for a 

similarly sized set of target mRNAs (Figure 4.1C). This observation is in agreement 

with the current model of mRNP complex remodeling between the nucleus and the 

cytoplasm, with the compartment-specific set of mRNA bound proteins being 

influenced both by their relative affinities and abundance (Mili and Steitz, 2004). 

We next addressed the existence of common RNA targets, which could 

provide insights in a potential common MN degenerative mechanism in a context of 

Smn, Caz and TBPH deficiency in humans. Overlap analysis of the mRNA 

interactomes of Caz, Smn, and TBPH revealed a striking absence of transcripts 

bound by all three RBPs in the cytoplasmic or nuclear fractions (Figure 4.1D). This 

result does not exclusively result from the small number of RNAs bound by Caz, as a 

poor overlap was also observed between the large sets of cytoplasmic mRNAs 

bound by TBPH and Smn. Considering that the universe of protein-associated 

transcripts was defined exclusively based on the adjusted p value, without imposing a 

minimal enrichment threshold, this observation is particularly surprising. Together, our 
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RIP-seq experiments thus uncovered that Caz, Smn and TBPH do not share 

common RNA targets. 

 

4.4.2  Gene expression changes in response to reduced levels of 

Caz, Smn and TBPH have significant commonalities but lack 
a clear functional signature 

 

In addition to regulatory roles associated with mRNA binding activity, Caz, 

Smn, and TBPH have been shown to have both direct and indirect roles as 

transcriptional, translational and splicing regulators (Fiesel et al., 2010; Morera et al., 

2019). It is thus possible that, despite associating to non-overlapping sets of mRNAs, 

these proteins may coordinate common gene expression programs through other 

molecular mechanisms. To address this hypothesis, we used shRNA-expressing fly 

lines to knock-down the expression of caz, Smn, and TBPH in adult flies by RNA 

interference (RNAi) and characterized the resulting changes in neuronal gene 

expression using RNA-seq (Figure 4.2A). After identification of fly lines displaying a 

robust silencing of each target gene, we used the GeneSwitch (GS) system to induce 

ubiquitous, adult-onset RNAi. This system relies on the feeding of flies with the 

hormone mifepristone (RU486), which activates GAL4-progesterone-receptor fusions, 

thus driving transgene expression (Figure 4.2A). The system has been reported to 

display some leakage in the absence of the hormone (Law et al., 2014) what 

supports a linear modeling strategy for differential expression analysis. Exploratory 

analysis of the normalized RNA-seq dataset revealed that the samples clustered 

primarily according to genotype, followed by treatment (Supplementary Figure 

S4.2B and S4.2C), an observation consistent with the expected leakage from the 

siRNA locus (Scialo et al., 2016). Notwithstanding, principal component analysis 

revealed that hormone-treated samples exhibited a better separation than the 

corresponding untreated controls, as expected from shRNA-expressing samples 

(Supplementary Figure S4.2C, top left vs right). Of note, hormone treatment 

seemed to induce common changes across all sample types, explaining up to 7% of 

the variance in the dataset (Supplementary Figure S4.2C, bottom). Based on these 

observations, differential gene expression (DE) analysis was performed between 
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hormone treated Caz, Smn and TBPH shRNA-expressing target and control fly lines, 

using a linear model that considered hormone treatment as a batch effect (see 

Supplementary Data S4.3). Confirming the robustness of our dataset and DE 

analysis, the specific shRNA target genes were found to be significantly down-

regulated exclusively in the corresponding fly line (Figure 4.2B). The highest log2 FC 

and most significant adjusted p values were observed for caz, followed by Smn, and 

finally TBPH. Given that these three proteins are known to regulate mRNA 

processing, we also analyzed the data to identify alternative splicing (AS) changes 

that occurred as a consequence of the gene knock-down. For this purpose, we used 

the rMATS, a statistical framework to identify alternative splicing events in datasets of 

replicate samples. This tool supports the analysis of five major types of AS events 

(alternative 5’ and 3’ splice sites, exon skipping, intron retention and mutually 

exclusive exons) based on reads mapping to annotated exon junctions and 

neighboring exons (Supplementary Data S4.4). However, for the aim of the present 

study, all AS changes identified in each siRNA line were combined and transcripts 

defined as either alternatively spliced, or not affected. Supplementary Data 5 

provides the final annotated list of all neuronal genes detected in the different fly 

models and experiments.  

Taking into consideration that RNA-seq was performed using samples isolated 

from fly heads, the list of transcripts showing significant DE or AS changes in 

response to caz, Smn or TBPH knock-down was filtered as previously described to 

exclude non-neuronal genes (Supplementary Figure S4.3). Figure 4.2C 

summarizes the overall results of the RNA-seq analysis. More than 2,200 genes and 

roughly 450 transcripts were found to be differentially expressed (DE) or alternatively 

spliced (AS) after caz silencing, respectively. In the case of TBPH silencing, RNA-seq 

analysis revealed about 1,600 DE and more than 250 AS genes. Silencing of Smn 

had the mildest detectable effect, with less than 1,400 DE genes and only 213 AS 

transcripts detected. These results are in agreement with the observed knock-down 

efficiency and sample heterogeneity (Figure 4.2B and Supplementary Figure 

S4.2B), suggesting that these differences more likely reflect our experimental set-up 

than a specific characteristic of the gene expression programs regulated by each 

protein. Of note, the proportion of up- and down-regulated genes within the DE gene 

set (~50%) was similar in all conditions (Figure 4.2C). Furthermore, only a relatively 
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small fraction of the deregulated transcripts in response to the RNAi was found to be 

bound by the corresponding protein (Supplementary Data S4.5). Caz-regulated 

transcripts showed minimal direct association with Caz protein (4.6%), whereas 

~22% of the genes showing altered expression in response to Smn or TBPH RNAi 

were found to be enriched in the corresponding RIP-seq assays. Interestingly, this 

fraction goes up to ~40% when considering only the transcripts displaying alternative 

splicing changes in response to Smn or TBPH knock-down (Supplementary Data 

S4.5).   
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Figure 4.2 RNA-Seq identification of Caz, Smn and TBPH-dependent neuronal transcripts upon 
adult-induced RNAi knockdown 
(A) Schematic representation of the experimental set-up. Hormone-dependent, adult-onset expression of 
short hairpin (sh) RNA was used to induce RNAi-mediated gene silencing of caz, Smn or TBPH. RNA was 
prepared from fly heads five to seven days post induction of shRNA expression, quality checked and 
subjected to mRNA-seq. Fly lines with shRNA against the always early (ae) embryonic gene served as 
control. (B) Bar graph showing the RNA-seq log2 fold change of the siRNA target genes plus the Gapdh 
housekeeping gene in each RNAi fly line. Statistically significant differences to the ae siRNA fly line are 
indicated as ** (adjusted p value < 0.05) and * (adjusted p value = 0.06 and p value < 0.02).  (C) Bar graph 
showing the number of upregulated (red), downregulated (green) and differentially spliced mRNAs (yellow) 
in each RNA-seq dataset. Note that the kind of splicing change was not considered for this analysis. (D) 
Venn diagrams and corresponding bar graphs showing the overlap in upregulated (top), downregulated 
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(middle) or differentially spliced (bottom) mRNAs in flies with RNAi-mediated silencing of caz, Smn or TBPH. 
The bar color compares the expected (black) and observed (red) overlap given the total transcripts altered 
in response to the silencing of caz, Smn or TBPH, respectively. The expected ratios were calculated using 
SuperExactTest R package. 

 

We next asked whether the transcriptome changes induced by the silencing of 

each target gene displayed any commonalities. A summary of the number of genes 

displaying common changes in expression as a consequence of the shRNA 

knockdowns, considering the type of effect (up-regulation, down-regulation, or 

alternative splicing), is depicted in Figure 4.2D. The overlap analysis of these gene 

sets reveals that a significant number of genes exhibits similar changes in response to 

all knockdowns, ranging from 16% of the genes identified as alternatively spliced in 

the caz shRNA fly line (73 out of 469), to 35% of the significantly downregulated 

genes in the Smn knock-down (254 out of 731) (Figure 4.2D). This is well above the 

overlap expected by random chance, with an estimated p value close to zero  P < 1e-

16, according to the hyper-geometric function for multi-set intersection analysis. 

Thus, despite the total lack of common RIP-seq targets, the down-regulation of Caz, 

Smn and TBPH protein expression elicited a partly coherent transcriptome response.  

Next, we performed a functional enrichment analysis to identify biological 

processes linked to the commonly affected genes. Surprisingly, almost no Gene 

Ontology (GO) terms were enriched in the subset of ~500 common DE genes 

(Supplementary Data S4.6). This result is in stark contrast with the strong functional 

signature that was observed for GO enrichment analysis of the subsets of mRNAs 

captured in the RIP-Seq assays. Of note, the DE/AS genes identified in the individual 

knockdowns of Caz, Smn or TBPH shared few common GO terms, suggesting the 

possibility of a synergistic effect on the same cellular pathways. To obtain insights into 

these potential connections, we proceeded to a more in-depth network-based 

analysis. 

 

4.4.3  Network-based approaches identify commonly affected 

neuronal functional modules  

 

Biological processes are dynamic and complex phenomena that emerge from 

the interaction of numerous proteins collaborating to carry out specialized tasks. 
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Thus, a biological process can be impacted to similar levels by changes in distinct 

proteins that contribute to the same regulatory function.  

 

To understand whether the phenotypic commonalities observed in ALS and 

SMA might result from the deregulation of distinct, but functionally connected target 

proteins, we used a computational network-based approach. First, we generated a 

library of tissue-specific "functional modules" comprised of physically interacting and 

functionally collaborating neuronal proteins (Figure 4.3A). To do so, we began by 

reconstructing the entire Drosophila neuronal interaction network using protein-

protein interaction (PPI) and adult fly brain RNA-seq datasets available in the APID 

and FlyAtlas2 repositories, respectively (Alonso-López et al., 2019; Leader et al., 

2018). Notably, 45.5% of the 5 353 proteins found in this neuronal network are 

encoded by transcripts whose levels and/or splicing were altered in response to caz, 

Smn and/or TBPH knockdowns. Next, we defined functional modules in the neuronal 

network by selecting groups of physically interacting proteins annotated under the 

same enriched functional term. Of the 232 modules with associated GO terms, we 

focused on the subset of 122 modules composed of 10 to 100 proteins 

(Supplementary Data S4.7). These modules retained 1541 proteins in total, 

maintaining the high percentage of Caz, Smn and/or TBPH-dependent genes found 

in the original network (43.7%).  

 

 

 



Chapter 4: Transcriptomic characterization of MND Drosophila models 

M.L. García-Vaquero, 2022 148 

 
Figure 4.3 Characterization of functional modules impacted by Caz, Smn and TBPH knockdown 
(A) Left panel: workflow used to generate and select functional modules. The adult brain interactome was 
obtained from the APID protein-interaction network after filtering for proteins expressed in the adult 
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Drosophila brain (i ,  see Methods). Functional enrichment analysis of the resulting interactome was 
performed to retrieve overrepresented GO Biological Processes ( i i ) . Note that the functional enrichment 
returns all the proteins annotated in each overrepresented term. The modules were generated from the 
functional enrichment by retaining the proteins annotated and simultaneously interacting in the brain 
network ( i i i ) . Finally, the impact of caz, Smn and TBPH knockdown was evaluated for each module ( iv)  to 
select modules with > 20% of transcripts altered in each individual knockdown (v). Right panel: summary 
of the workflow outputs. “Overall impact” calculation is exemplified for two modules (X/Y) with the impact 
score indicated on the right. Only the Y module would be selected, as the overall impact of module X is 
below the defined threshold. (B) Line plot comparing the impact of individual knockdowns on selected 
modules, sorted by increasing overall impact. Modules with the highest impact for each protein are 
indicated by their short name. (C) Box plots showing the percentage of proteins with MND-linked orthologs 
in each module class. Selected modules (blue) are significantly enriched in proteins with MND-linked 
orthologs compared to non-selected modules (grey) (p value = 1.5e-3, Wilcoxon test). (D) Pie charts 
representing the fraction of transcripts with altered expression (DE) or splicing (AS) in response to a given 
protein knockdown that are simultaneously found in RNP complexes bound by the same protein. The high 
percentage of DE/AS transcripts (selected modules, blue pie chart) is significantly related to a higher 
frequency of DE/AS transcripts involved in RBPs bound by the same proteins (p-value =1.4e-2, Chi2 test of 
independence). 
 

To evaluate the impact of each of the three proteins on individual functional 

modules, we calculated the percentage of nodes belonging to the DE or AS 

categories. To focus on modules simultaneously affected by the downregulation of 

caz, Smn and TBPH, we assigned to each module an “overall impact” score, defined 

as the minimal percentage of transcripts showing altered expression in any given 

knockdown (Figure 4.3A). 52 modules with an overall impact score of ≥ 20% were 

identified. These modules were selected for further analysis, as they seem to be 

under the common control of all three proteins, although not necessarily through 

regulation of the same target genes.  

 

Consistent with the potential functional relevance of the selected modules, 

associated functional terms were found to comprise a range of biological processes 

relevant in a MND context. These include general cellular processes such as kinase 

signal transduction pathways, regulation of the actin cytoskeleton, regulation of 

endocytosis, as well as neuron-specific processes such as learning and memory, and 

regulation of synapse assembly (Supplementary Data S4.7). Interestingly, 

differences in the impact of individual gene knockdowns were observed when 

comparing modules, which we propose to reflect some degree of functional 

specialization of the two ALS-related genes and the single SMA-associated gene 

(Figure 4.3B). For example, the module related to “learning and memory” functions 

was strongly impacted by caz down-regulation, but to a lower extent by Smn or 

TBPH silencing. In contrast, the module “neuromuscular synaptic transmission” was 

strongly impacted by TBPH, followed by caz, and less so by Smn knockdown. Finally, 
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some modules, like the one linked to “regulation of endocytosis” tended to be 

similarly impacted by all three knockdowns. Overall, the impact profiles of TBPH and 

Caz knockdowns on functional modules are much more similar to each other than to 

Smn, which generally displays lower impact scores, with a few exceptions including 

“regulation of endocytosis” (Figure 4.3B). This observation is quite striking 

considering that Caz and TBPH are associated to the same disease. To determine 

the relevance of the selected modules to the pathophysiology of MNDs, we 

calculated for each module the percentage of proteins with human orthologs already 

linked to MNDs (according to the DisGeNET repository (Piñero et al., 2020)). 

 

Remarkably, a strong enrichment in the proportion of proteins with MND-linked 

human orthologs was observed for the selected modules when compared to those 

that did not pass the defined “overall impact” threshold (p value = 1.5e-3, Wilcoxon 

test) (Figure 4.3C). This result suggests that we were able to identify novel disease-

relevant interactions based on the convergent analysis of Caz, Smn and TBPH-

dependent functional modules in Drosophila.  

 

As the selected modules represent core biological functions regulated by the 

three proteins, we looked at the prevalence of direct targets (i.e., mRNAs identified by 

RIP-seq) among the genes that encode proteins belonging to these modules and 

show DE and/or AS changes upon caz, Smn and/or TBPH knock-down. We 

observed that 31% of the 411 DE/AS transcripts associated to selected modules are 

also bound by at least one of the three MND proteins. This percentage decreases 

significantly to 24% of the 1119 DE/AS transcripts associated to non-selected (low 

impact) functional modules (p value = 1.4e-2, Figure 4.3D), being even lower in 

transcripts that are not part of any module (18% of 2280 transcripts, p value = 3.1e-

8; Supplementary Data S4.7). Together, these results suggest that our integrated 

data analysis approach was able to identify key functional processes that are 

commonly and directly regulated by the three proteins. The results obtained point to a 

convergent functional impact that occurs through the regulation of distinct individual 

targets. The connection to the identified biological processes is mediated by 

functional protein networks enriched in molecules with already known links to MNDs. 
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Further exploration of the selected networks may thus provide relevant information to 

understand MND pathophysiology. 
 

4.4.4  Convergent disruption of neuromuscular junction processes 
by altered Caz, TBPH or Smn protein levels 

 

Pairwise comparison of the 52 selected modules revealed a high number of 

shared genes between many of them (see Supplementary Figure S4.4). To 

generate a non-redundant map of the common functional networks established by 

Caz, Smn and TBPH, we coalesced groups of highly interconnected modules into 

larger but more condensed "super-modules" (Figure 4.4). This resulted in seven 

super-modules named after their core functional association: signaling, traffic, 

cytoskeleton, stress, behavior, synaptic transmission, and neuro-muscular junction 

(NMJ) (Supplementary Data S4.7).  
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Figure 4.4 Identification of functional super-modules through protein overlap analysis 
Network representation of the selected functional modules. Nodes represent the selected modules 
designated by the original name of the gene ontology term. Node size indicates the number of proteins 
incorporated in the module and gradient color the overall impact, i.e., minimum % of transcripts altered by 
each knockdown. The bar plots within the nodes indicate the impact of each knockdown on the module. 
Edge width indicates the number of commonly altered transcripts between two modules. Module overlaps 
(edges) below 20% were discarded which led six unconnected modules (not represented in the network). 
Modules were manually grouped into 7 "super-modules" (circles) based on edge density (common altered 
transcripts) and functional similarity of module names.  
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These super-modules range in size from 77 to 259 nodes, with a maximum 

and minimum overlap between any two super-modules of 87 and 1 out of 673 nodes 

in total, respectively (Supplementary Figure 4.5). We next determined the presence 

of MND-associated gene orthologues in the different super-modules (MND-linked, 

Figure 4.5, left panel). We further mapped the distribution of DE transcripts that are 

direct targets of Caz, Smn and TBPH (RNA-binding, Figure 4.5, middle panel); and 

of transcripts showing altered splicing (Altered Splicing, Figure 4.5, right panel). This 

analysis revealed a distinctive distribution of these characteristics in the groups of 

modules that were coalesced into super-modules, which is particularly evident 

regarding the percentage of transcripts displaying altered splicing or with potential 

roles in MND. In particular, the super-modules related to behavior, neuro-muscular 

junction (NMJ) and cytoskeleton incorporated the largest fraction of MND-linked and 

AS transcripts. Given the critical link between MNDs and the physiology of NMJs, we 

focused on the NMJ super-module for a more in-depth analysis.  

 

 
Figure 4.5 Analysis of super-module features 
Box plots showing the distribution of the percentage of annotated proteins in the different super-modules 
(colored boxes) and across all other (non-selected) library modules (grey boxes). Grey dots represent the 
percentage in each individual module that is part of the super-module group. (Left) Percentage of proteins 
encoded by MND-linked gene orthologs according to the DisGeNET repository. (Middle) Percentage of 
proteins encoded by DE transcripts that are direct RNA-binding targets of caz, Smn and TBPH. (Right) 
Percentage of proteins encoded by transcripts with altered splicing patterns. 
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The NMJ super-module comprises 104 proteins, of which 49% (51 nodes) are 

encoded by genes differentially expressed and/or displaying altered splicing in at least 

one knockdown condition (Supplementary Data S4.8). 38 of these genes establish 

direct interactions, forming the subnetwork represented in Figure 6A. To assess the 

degree to which the NMJ “super module” functionally interacts with Caz, Smn and 

TBPH in vivo, we cross-referenced it to genetic modifiers of Drosophila Smn, Caz or 

TBPH mutants identified in genome-wide screens for modulators of degenerative 

phenotypes using the Exelixis transposon collection (Chang et al., 2008; Kankel et 

al., 2020; Sen et al., 2013). Interestingly, 21 nodes (~20%) of the NMJ “super 

module” were identified as either suppressors or enhancers of these models of 

neurodegeneration (Supplementary Data S4.8). Given that the reported percentage 

of recovered modifiers in these screens ranged between 2% and 5%, this result 

highlights the biological relevance of the functional modules identified through our 

approach. Detailed analysis of the FlyBase annotations for the genes within the NMJ 

subnetwork represented in Figure 4.6A provides interesting insights into the potential 

mechanisms causing neuronal dysfunction in the context of MNDs.  

First, essential genes are highly overrepresented in the module. While about 

30% of Drosophila genes are expected to be essential for adult viability (Spradling et 

al., 1999), more than 75% of genes present in the NMJ super-module have a lethal 

phenotype (Figure 4.6B). Exceptions are CASK, liprin-γ, Nlg2, metro, dbo and nwk. 

For RhoGAP92B and Nrx-1, it is so far not entirely clear whether mutant alleles would 

cause lethality. We next asked whether the human orthologs of these genes are 

linked to neurological disorders. TBPH (TDP-43), unc-104 (KIF1A, B, C), Ank2 (Ank2), 

futsch (MAP1A/B), sgg (GSK3A/B), Src64B (FYN/SRC) and Nrx-1 (Nrx-1-3) have 

been implicated in MNDs (hexagonal nodes in network). In addition to these, a high 

number of genes have human orthologs linked to other neuronal dysfunctions or 

diseases. For example, human orthologs to fly genes CASK (CASK), Mnb (DYRK1A), 

Rac1 (RAC1), Dlg-1 (DLG1), Cdc42 (CDC42), Fmr1 (FMR1, FXR1/2), trio (TRIO), 

Nedd4 (NEDD4L/NEDD4) and CamKII (CAMK2A/B/D) have been linked to intellectual 

disability. Epilepsy has been associated with mutations in the human gene orthologs 

of cac (CACNA1A/B/E), alpha-Spec (SPTAN1) and slo (KCNMA1). In addition, human 

psychiatric diseases like schizophrenia or bipolar disorder can be caused by 
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alterations in genes with high similarity to Pak (PAK1/2/3) and dbo (KLHL20 indirect, 

via regulation of Pak, (Wang et al., 2016). 

 

 
Figure 4.6 Detail of the core protein-interaction network of the neuromuscular junction (NMJ) 
super-module 
(A) Protein-interaction subnetwork of NMJ super-module nodes that are encoded by transcripts altered in 
at least one knockdown model. Only proteins with direct interaction with other proteins encoded by DE/AS 
transcripts are represented. Node size indicates the number of knockdown models in which the transcript 
revealed altered expression (DE) and/or splicing (AS). Several transcripts are both DE and AS; yellow nodes 
indicate transcripts only showing AS. Bold outline highlights proteins encoded by transcripts found in Caz, 
Smn and TBPH RNP complexes. Hexagons highlight proteins whose human orthologs are MND-linked. 
(B) Categorical heat map summarizing FlyBase annotations for the proteins in the network represented in 
A. Essential proteins were defined according to the FlyBase repository. Proteins labeled as “Dubious” 
display a lethal phenotype after induction of RNAi. Thus, it is likely that flies homozygous for amorphic 
mutations would result in lethality during development. However, since this might result from off-target 
effects, they were not considered essential. MND-associations were retrieved from the DisGeNET 
repository. Caz, Smn and TBPH columns indicate in which knockdown models the corresponding 
transcripts were found altered. Last 7 columns indicate whether the protein is also found in other super-
modules. 
  

Ten-a

Atpalpha

Nrx-1

Ank2

RhoGAP92B

unc-104

Src64B

Nedd4

mnb
nwk

par-1

Cdc42

Liprin-gamma

slo

Ten-m

tr io

CASK

metro

g ig

beta-Spec

pum

dbo

sesB

Rae1

CaMKII

futsch

alpha-Spec

dlg1

cac

Fas2

Fmr1

sgg

ena

TBPH

Lar
Abl

Sdc

Pak

Nlg2

Edge:  

Color: type of change Size: # of knockdowns 

Triple 
Double 

Single 

Shape: RNA-binding 

MND-linked gene 

Physical protein interaction 

A B 

Down 

AS 

Up 

Essential 
Dubious 

Neuron expression 
Broad expression 

Es
se

nt
ial

 
Di

se
as

e-
lin

ke
d 

Ex
pr

es
sio

n 
Ca

z 
Sm

n 
TB

PH
 

NM
J 

Si
gn

ali
ng

 
Sy

na
pt

ic 
Be

ha
vio

r 
St

re
ss

 
Tr

af
fic

 
Cy

to
sk

ele
to

n 

Slo 
Atpalpha 

Ank2 
TBPH 

Nedd4 
par-1 
Fmr1 

Ten-m 
Sgg 
mnb 

beta-Spec 
cac          

dlg1 
futsch 
Ten-a 

trio 
sesB 

Lar 
Abl 

alpha-Spec 
pum 

Cdc42 
Nlg2 

Src64B       
unc-104 
CaMKII 

Pak 
Sdc 

Rac1  
CASK 
Nrx-1 
Metro 
Fas2 
Nwk 
Ena 
dbo          

Liprin-gamma 
RhoGAP92B  

slo
Atpalpha

Ank2
TBPH
Nedd4
par−1
Fmr1

Ten−m
sgg
mnb

beta−Spec
cac
dlg1

futsch
Ten−a

trio
sesB
Lar
Abl

alpha−Spec
pum

Cdc42
Nlg2

Src64B
unc−104
CaMKII

Pak
Sdc
Rac1
CASK
Nrx−1
metro
Fas2
nwk
ena
dbo

Liprin−gamma
RhoGAP92B

es
se
nt
ia
l

di
se
as
e

TE C
AZ

SM
N

TB
PH

N
M
J

Si
gn
al
lin
g

Sy
na
pt
ic

Be
ha
vi
or

St
re
ss

Tr
af
fic

C
yt
os
ke
le
to
n

matrix_25

0
2
4
6
8



Chapter 4: Transcriptomic characterization of MND Drosophila models 

M.L. García-Vaquero, 2022 156 

 
Alterations in the human gene coding Teneurin Transmembrane Protein 4 

(TENM4, shares high homology with fly Ten-a and Ten-m) are known to cause 

hereditary essential tremor-5, while human neuroligins NLGN1, NLGN3 and NLGN4X 

were linked to autism/Asperger syndrome and encode orthologs to fly Nlg2. Finally, 

alterations in human orthologs to fly Pum (PUM1/2), beta-Spec (SPTBN1/2) and Ank2 

(ANK1/2/3) have been associated with Ataxia-like phenotypes and mental retardation. 

In total, we were able to find direct associations to human MN or neurological 

disorders for 32 out of the 38 represented genes. Thus, although most of the genes 

captured in our analysis are not exclusively expressed in neurons, their mutations are 

somehow associated to abnormal neuroanatomy and function. Interestingly, this 

holds true for the non-essential genes as well. It is also noteworthy that, in spite of the 

relatively limited overlap between the different super-modules, all the proteins that 

constitute this core NMJ network are common to at least another super-module, and 

on average to more than half of them (Figure 4.6B). 

 

Altogether, these observations imply that the proteins encoded by the NMJ 

super-module genes fulfill relevant functions in NMJ maintenance and that their 

alteration could eventually contribute to MND. Our results reveal that Caz, Smn and 

TBPH act in concert to regulate biological processes linked to NMJ maturation and 

function by altering the expression of transcripts encoding distinct, yet physically and 

functionally interacting proteins. We propose that the functional complexes 

established by these proteins may represent important players in disease 

progression, emerging as potential common therapeutic targets rather than the 

individual proteins that compose them. 
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4.5  Discussion 
 

SMA and ALS are the most common MNDs and are characterized by a 

progressive degeneration of motor neurons and loss of skeletal muscle innervation. 

Although both diseases share many pathological features, including selective motor 

neuron vulnerability, altered neuronal excitability, as well as pre- and post-synaptic 

NMJ defects (Bowerman et al., 2018), their very different genetic origins and onset 

led them to be classified as independent, non-related diseases. This view has been 

challenged by recent studies demonstrating that disease-causing proteins (Smn for 

SMA, Fus and TDP-43 for ALS) are connected through both molecular and genetic 

interactions (reviewed by (Gama-Carvalho et al., 2017).  

Furthermore, the increasing number of functions attributed to these proteins 

converges onto common regulatory processes, among which control of transcription 

and splicing in the nucleus, as well as mRNA stability and subcellular localization in 

the cytoplasm. Despite the observed convergence in the molecular function of Smn, 

Fus and TDP-43, transcripts co-regulated by these three proteins, and thus central to 

SMA and ALS pathophysiology, have not been identified by previous transcriptomic 

analyses. In this study, we used the power of Drosophila to systematically identify, on 

one hand the mRNA repertoires bound by each protein in the nucleus and cytoplasm 

of adult neurons and, on the other hand, the mRNA populations undergoing 

significant alterations in steady-state levels or splicing as a consequence of the 

knockdown of each protein. This approach revealed a striking absence of mRNAs 

commonly bound by the three proteins and a small, albeit significant, number of 

commonly altered transcripts. Notwithstanding, and contrary to the simplest model 

that explains shared disease phenotypes, this subset of shared transcripts did not 

present any functional signature linking it to biological pathways related to disease 

progression.  

Considering that functional protein complexes are at the core of all critical 

cellular mechanisms, an alternative model posits that shared phenotypes may arise 

through convergent effects on independent elements of such complexes. To 

investigate this possibility, we mapped the de-regulated transcripts identified in our 

transcriptomic analysis onto a comprehensive and non-biased library of neuronal 

physically interacting and functionally collaborating protein consortia. This library was 
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generated by integrating publicly available information from Drosophila PPI networks, 

neuronal gene expression and gene ontology annotations. This approach led to the 

identification of a set of 52 functional modules significantly impacted by all three 

proteins through the regulation of distinct components (Figure 3). Of note, although 

we used as selection criterium the presence of a minimum of 20% of module 

elements displaying altered gene expression in each knock-down model, we found 

that modules passing this cut-off were significantly enriched in direct RNA binding 

targets of Smn, Caz and TBPH compared to non-selected modules (Figure 4.3D). 

Considering that only a very small proportion of these targets are common to the 

three proteins, this observation underscores our hypothesis of convergent regulation 

of functional complexes through distinct individual elements. Furthermore, the 

enrichment of RIP targets in the selected modules establishes a direct mechanistic 

link between changes in the levels of Smn, Caz and TBPH and changes in the steady 

state expression of module components. It is possible that the steady-state levels of 

transcripts encoding other proteins that belong to the same complex will vary as part 

of homeostatic feed-back processes. This could justify the presence of a relatively 

large number of DE/AS genes that are common to the three knockdown models, but 

whose transcripts are not found as direct protein targets in our RIP-seq data.   

The functional classification of the 52 selected modules revealed a striking 

connection with critical pathways for MND. Particularly relevant, mapping of the 

human orthologues of the different module components revealed a high number of 

genes with reported association to MNDs. This observation provides support to the 

relevance of our approach, which uses Drosophila as a model for uncovering 

molecular interactions underlying human disease. It is noteworthy that the enrichment 

in disease-associated orthologues was not homogeneous across the super-modules 

generated by coalescing highly related modules into a smaller number of larger 

functional protein consortia (Figure 4.5). Interestingly, we found that a super-module 

related to NMJ function was among the highest scoring regarding both enrichment in 

MND associated genes and presence of alternatively spliced/direct RNA binding 

targets. The subset of DE/AS genes present in this module forms a highly 

interconnected network and the analysis of FlyBase annotations for this focused 

subset provided interesting insights into potential mechanisms that may underlie 

neuronal disfunction. An unusually large number of DE/AS genes within the NMJ 
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super-module was found to correspond to essential genes, indispensable for the 

development of adult flies. Alterations in the abundance and/or function of these 

genes have been linked in several cases to a disturbance of nervous system function. 

This is reflected by an alteration in stress response and/or abnormal behavior in either 

embryos, larvae or adult flies. Strikingly, even the non-lethal genes captured in this 

super-module have been shown to impact nervous system development and cause 

abnormal neuroanatomy when mutated/silenced.  

The essential function of most of the selected genes obviously prohibits the 

analysis of loss-of-function phenotypes in the adult organism. In neurons, classical 

forward and reverse genetics of essential genes is not possible and, according to the 

post mitotic nature of neurons, clonal analysis is impossible. This is the reason why 

there is little genetic data on gene products involved in neuronal maintenance. 

Conditional knockouts and spatiotemporal control of RNAi-mediated gene silencing 

(like the approach used here) is a way to overcome this limitation. We can only 

speculate whether a neuron specific, adult-onset knockdown of the individual genes 

within the super-module will impair adult neuron integrity. However, taking all the data 

together, it is reasonable to assume that the collective deregulation of this set of 

genes within the super-module is incompatible with proper neuronal function. This 

assumption is particularly sound if the encoded proteins and their associated 

functional complexes are found to contribute to cellular processes critical for neurons, 

as indeed we find in this case. In fact, for almost all proteins encoded by the NMJ 

sub-network, synaptic functions have been reported. Interestingly, the other identified 

super-modules are also functionally annotated to cellular mechanisms that are 

especially important in neurons, like signaling, cytoskeletal dynamics, traffic and 

transport. Thus, an attractive model emerges for SMA and ALS MN dysfunction that 

states that convergent functional impacts can emerge from the independent, subtle 

deregulation of a group of proteins that are part of a set connected, neuronal 

functional modules. A persisting impairment in critical neuronal processes could 

initiate a self-reinforcing cycle of detrimental events, eventually resulting in neuronal 

decline. Especially in the case of sporadic, late-onset ALS, this model would comply 

with the events observed in disease progression. 
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Conclusions 
 

In conclusion, our work reveals common functional hubs that are under the 

control of the SMA and ALS disease-associated genes Smn, TBPH and Caz, through 

independent target genes and transcripts that encode proteins which collaborate in 

neuronal functional consortia. These common hubs are deregulated in pre-

symptomatic disease models and are primarily composed of ubiquitously expressed 

genes, suggesting that they may serve as a starting point for the discovery of novel 

disease biomarkers. Furthermore, the identification of common molecular 

dysfunctions linked to distinct MNDs and disease-associated genes suggests that 

common therapeutic strategies to help slowdown disease progression or improve 

symptoms may be amenable in spite of different genetic backgrounds. 
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4.6 Supplementary Figures 
 

 

Figure S 4.1 Characterization of the UAS-GFP-Caz, UAS-GFP-Smn and UAS-GFP-TBPH fly 
models 
(A-C) Adult brains dissected from elav>GFP-Caz (A), elav>GFP-Smn (B) and elav>GFP-TBPH (C) flies 5-
7 days after expression. The GFP signal is shown in green. Insets in a1-a3, b1-b3 and c1-c3 show the 
sub-cellular distribution of GFP-Caz, GFP-Smn and GFP-TBPH respectively. GFP signals are shown in 
white (left) or green (overlay, right). DAPI signals are shown in white (middle) or blue (overlay, right). Scale 
bars: 50 μm. Complete genotypes: elav-Gal4/Y; tub-Gal80ts/UAS-GFP-Caz (A), elav-Gal4/Y; tub-
Gal80ts/UAS-GFP-Smn (B) and elav-Gal4/Y; tub-Gal80ts/UAS-GFP-TBPH (C). (D) Western blot 
performed on lysates from adult elav>GFP-Caz (left), elav>GFP-Smn (middle) and elav>GFP-TBPH (right) 
brains. Anti-GFP antibodies were used to detect GFP fusions. Tubulin was used as a loading control.  
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Figure S 4.2 Overview of RIP-seq and mRNA-seq data 
(A) Sample-to-sample distance heatmap for the RIP-seq dataset revealing overall similarities and 
dissimilarities between dataset samples based on Euclidean distance. (B) Sample-to-sample distance 
heatmap for the mRNA-seq dataset revealing overall similarities and dissimilarities between dataset 
samples based on Euclidean distance. (C) Principal component analysis for mRNA-seq datasets. Top 
panels: analysis of dataset according to treatment status (left - untreated; right - hormone treated), samples 
colored by fly line. Bottom panel: full dataset, samples colored by treatment, symbols indicate fly line 
(condition).  
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Figure S 4.3 Coverage of RIP-Seq and mRNA-seq experiments in FlyAtlas tissue-specific RNA-
Seq profiles 
(A) Normalized RNA-Seq data of adult fly brain tissue was retrieved from the FlyAtlas2 database (see 
methods). The total 9020 transcripts were filtered using an expression threshold of > 1 FPKM.  From the 
total 7369 transcripts identified in the RIP-Seq and knockdown experiments, 5511 were also detected in 
this dataset, and will be referred to as "neuronal" transcripts hereafter. Bar graph shows the number of 
transcripts identified in each experiment. (B) clusterProfiler R package was used to compare the functional 
enrichment of the 5511 “neuronal” and 1858 “non-neuronal” transcripts identified in RIP-Seq and 
knockdown experiments using Gene Ontology Biological Process, hyper-geometric test, adjusted p-value 
0.05. From 824 enriched terms in neuronal transcripts, 92 include at the description the following key 
words: "synap", "axon", "neuro", "dendrite", "nervous", "button", "glial" or "cortex". Non-neuronal 
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transcripts were enriched in 19 terms, none of them related to neuronal processes. Figure summarizes the 
top 7 functions enriched in each set. (C) 67.4% of the 1858 transcripts "non-neuronal" identified in the 
experiments were detected in 10 additional tissues available at FlyAtlas2 and displayed highest expression 
densities on head, thoracicoabdominal ganglion and eye tissues. Figure shows density plots of log2-
transformed FPKM values. (D) Density plot of log2-transformed FPKM values of “neuronal” transcripts from 
the FlyAtlas2, RIP-Seq, DE/AS, and selected functional modules subsets, revealing an enrichment of our 
datasets in transcripts with medium to high expression levels in neurons, particularly for the transcripts with 
altered expression retained in the selected modules. 
 

 

 

 

Figure S 4.4 Evaluation of protein redundancy across functional modules 
(A) Complete-linkage hierarchical clustering using Jaccard’s similarity coefficient for the 122 modules with 
a size between 10 to 100 proteins. The 52 modules passing the overall impact cut-off of >20% of 
transcripts altered in at least one knockdown are labeled in red. (B) Box plots describing the number of 
modules sharing at least one protein when comparing modules including less or more than 100 proteins 
Wilcoxon test, p value 2.2×10-16.  
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Figure S 4.5 Bar plot indicating the number of proteins found in common between different 
super-modules 
Colored bars indicate total number of proteins in each super-module. Black bars indicate the overlap 
between super-modules. Only overlap sets including at least 5 proteins are shown. 
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4.7  Supplementary Data 
 

The datasets generated and/or analyzed during the current study are available in the 

European Nucleotide Archive repository under the umbrella study FlySMALS, with 

accession numbers: 

PRJEB42797 (https://www.ebi.ac.uk/ena/browser/view/PRJEB42797), 

PRJEB42798 (https://www.ebi.ac.uk/ena/browser/view/PRJEB42798). 

 

Supplementary data files are available in: 

https://github.com/GamaPintoLab/MLG_PhDThesis_SupData 

 

 

Supplementary Data S4.1 Sequencing library statistics 

Supplementary Data S4.2 List of RIP-Seq enriched transcripts  

Supplementary Data S4.3 RNA-Seq DE transcripts  

Supplementary Data S4.4 Alternative splicing analysis results 

Supplementary Data S4.5 Annotation of all FlyAtlas “neuronal” genes regarding the 

presence in the different DE/AS/RIP data subsets 

Supplementary Data S4.6 FEA of target gene-dependent transcripts 

Supplementary Data S4.7 Functional Module annotation  
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5.1  Introduction 
The pivotal goal of the research presented in this thesis was to investigate the 

molecular events common to the MND spectrum. With this aim, we developed 

Double-Specific Betweenness (S2B), a network-based method to identify bottleneck 

proteins connecting ALS and SMA disease modules in the human Protein-Protein 

Interaction (PPI) network (Chapter 3). In parallel, we characterized the deregulation in 

gene expression induced by the knockdown of Tbph (TARDBP), Caz (FUS) and SMN 

(SMN1) Drosophila orthologs of ALS and SMA-genes in fly models (Chapter 4). 

Initially in Chapter 3, the biological functions of S2B candidates were characterized 

by performing a straightforward functional enrichment analysis. On the other hand, 

the neuronal-specific role of the three disease associated genes in Drosophila models 

was inferred using the strategy presented in Chapter 2, based on mapping of 

Differentially Expressed genes (DEgs) onto fly brain BioInt units. 

Chapters 3 and 4 returned valuable insights into the cellular processes 

potentially critical for MN survival. However, the two studies are founded on very 

different strategies. The S2B method was designed to prioritize candidates according 

to their network centrality, while the DG functional profiles were inferred from broad 

changes in the steady state transcriptome. Consequently, the two strategies are 

expected to reveal different facets of MND pathomechanisms. For simplicity, from 

here on, all the proteins selected by the S2B method or identified as being DG targets 

are commonly referred to as 'MND candidates'. In this final analysis, we aim to 

integrate the insights gained throughout the work presented in this thesis, to propose 

a unified understanding of the early events in MN degeneration. 

 

Finding functional homology between proteins from different animal models to 

human is the first step to interpret the results retrieved from biomedical research. 

Unfortunately, orthology mapping between human and invertebrates such as 

Drosophila is highly complex due to the large number of paralog genes that diversified 

in human. The large imbalance in the total number of genes and the interaction 

rewiring between paralog proteins directly influences the network connectivity 

patterns, which in turn is decisive for the coordination of cellular functions (Shou et 

al., 2011). 
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For this purpose, several approaches that incorporate information from 

network architecture have been proposed. One of the most straightforward strategies 

consists in comparing protein complex membership. However, it falls short to identify 

the conservation of interactions coordinating the protein complexes. On the other 

hand, global network alignment methods (recently reviewed in (Ma and Liao, 2020)) 

notably increase the analysis dimensionality and, therefore, fell outside the scope of 

the chapter. As an intermediate solution, many researchers opt to compare 

topological network properties - namely node degree, betweenness or clustering 

coefficient - to identify overall connectivity patterns. However, the human PPI network 

is twice the size of its fly counterpart, so the connectivity comparison would require 

prior use of size normalization techniques (Biran et al., 2019). To our best knowledge 

though, these algorithms are not available in R environment yet. 

 

On this basis, we opted to take advantage of BioInt units to address which 

functional assemblies accumulated more MND candidates. BioInt units are 

reconstructed from Tissue-specific (TS) networks, so they incorporate TS functional 

information. At the same time, GO is a universal catalog what allowed the direct 

comparison between the BioInt units generated across different specie-specific 

networks. Of note, the results presented below are discussed in a closing section that 

integrates the conclusions extracted throughput the thesis. 
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5.2  Methods 
 

Tissue-specific networks Human and Drosophila TS networks were 

reconstructed using tissue-naive PPI data recovered from the APID repository on April 

2021 (Alonso-López et al., 2019) and publicly available RNA-seq profiles derived 

from human brain samples (Uhlén et al., 2015) and from the FlyAtlas2 repository 

(Leader et al., 2018) (see methods in Chapter 2 and 4, respectively). 

 

Identification of S2B candidates S2B candidates were established using the 

brain PPI network, and ALS and SMA disease-associated genes retrieved from the 

DisGeNET repository (Piñero et al., 2020) on May 2021. In the case of fly S2B 

candidates, the human disease genes were converted to their ortholog genes using 

the DIOPT tool (Hu et al., 2011) accessed on September 2020. S2B candidates were 

filtered using the default S2B score, threshold, and specificity cutoffs > 0.9, in 100 

randomizations each, as described in Chapter 3. 

 

Identification of differentially expressed genes (DEgs) The human ALS- 

Differential Gene Expression (DGE) profile was established from a publicly available 

RNA-seq dataset on spinal cord samples from control and ALS patients (GEO 

accession number GSE76220) (Barrett et al., 2013). The authors of the study 

collected adult spinal motor neurons (MNs) using laser capture microdissection (LCM) 

of lumbar spinal cord sections from 13 sporadic ALS patients and 9 controls. Total 

RNA was sequenced on Illumina GA II platform (Krach et al., 2018). The DGE analysis 

was performed in the GREIN web platform (Mahi et al., 2019) that applies negative 

binomial generalized linear model as implemented in edgeR (Robinson et al., 2010). 

The ALS-DE profile was filtered using an absolute log2 fold change cutoff > 0.5 and 

adjusted p-value < 0.05. The Drosophila MND DEG counterparts were defined from 

the differential expression analysis performed in Chapter 4. In this case, independent 

RNA-seq profiles were generated for adult fly knockdown models of Tbph (TARDBP), 

Caz (FUS) and SMN (SMN1) genes. The analysis in Chapter 5 includes all the 

transcripts found altered in at least one knockdown. Table 1 summarizes the 

methods employed in MND candidate prioritization and the outcomes returned from 

the analyses. 
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Table 5.1 Overview of the methodology and data employed to generate the MND candidate gene 
sets 
The S2B method requires as input data both ALS and SMA DGs and a brain PPI network. Fly S2B 
candidates are identified from a Drosophila brain PPI network and MN-DG orthologs. Differentially 
expressed genes were identified from RNA-Seq experiments using distinct statistic algorithms and 
thresholds. MND candidates were mapped to human and fly brain BioInt libraries. The total human 
orthologs mapped from Drosophila candidates are noted in parentheses. The cross-species analysis only 
considered the BioInt units significantly enriched in MND candidates from at least one set. 

 

 

Cross-species MND candidate integration Human and Drosophila BioInt 

libraries were generated using the same criteria as indicated in Chapter 2. 

Supplementary Data 5.1 collects the BioInt units reconstructed in Drosophila TS 

PPI networks. MND candidates were mapped on BioInt unit libraries. Human and/or 

fly BioInt units enriched in at least one MND candidate set - hyper-geometric test, p-

value < 0.05 - and sharing > 0.6 Wang's semantic similarity were aggregated in 

functional groups.  

  

ALS SMA Nodes Edges

Human 189 32 12538 185659 264 264 176 40

Fly 78 14 5171 34994 108 108
 (92 orthologs)

70 24

Genetics Sample Method Filter

Human ALS patients Spinal Cord GEO2R
adj.p < 0.05

FC > abs(0.5) 596 470 157 14

Fly
TBPH, Caz, 

Smn 
knockdown

Head DESeq2 adj.p < 0.05 2382
1098

(1164 orthologs) 412 16

Differential Expression analysis

Algorithm

Candidate 
list

Candidates in 
brain network

Candidates in 
BioInt units

BioInt units 
enriched in 
candidates

Disease genes (seeds) Brain network

S2B method

Experimental set
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5.3 Results 
 
The cross-species analysis of MND molecular mechanisms integrates four 

candidate gene lists. The human S2B candidates and fly Differential Gene Expression 

(DGE) profiles were derived from the work presented in Chapters 3 and 4, 

respectively. To strengthen the cross-species data integration, we incorporated two 

complementary gene sets; fly S2B candidates and human ALS-DEGs (see Methods, 

Figure 5.1A). The candidates were mapped onto BioInt libraries (generated in 

Chapter 2) and the BioInt units enriched in MND candidates from at least one out of 

the four candidate gene sets were selected as potential MND pathways (Figure 

5.1B). The BioInt libraries were generated from the same Gene Ontology (GO) catalog 

thus enabling the BioInt units of the two species to be analyzed together (Figure 

5.1C). To identify higher-order common hallmarks in the BioInt units enriched in 

human and fly libraries, they were grouped into broader functional terms. By doing 

so, the functional groups can incorporate BioInt units from human or fly libraries, or 

both. Finally, we evaluated whether a functional group includes BioInt units enriched 

in various MND candidate sets.  
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Figure 5.1 Diagram summarizing the thesis workflow 
(A) Human and fly BioInt libraries, differential gene expression (DGE) and S2B candidate identification. The 
table indicates the chapters in which each type of candidate was retrieved. (B, C) Sketches to summarize 
the analysis workflow in Chapter 5. (B) The functional characterization of MND gene candidates was 
performed by mapping DEGs and S2B candidates into BioInt units. The BioInt units enriched in MND gene 
candidates (hyper-geometric test, p-value <0.05) were defined as functions likely affected by MND 
molecular alterations. (C) The cross-specie knowledge integration was performed by simplifying (Semantic 
similarity of Gene Ontology annotations) the candidate BioInt units into broader functional groups. 
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5.3.1 The differences between human and Drosophila BioInt 

libraries may reflect the species' functional complexity 

 
Prior to the cross-species analysis, we assessed the global properties of the 

tissue-specific (TS) PPI networks and BioInt libraries from the two species (Figure 

5.2). First, we addressed the total percentage of human and fly orthologs identified in 

the TS gene profiles (Figure 5.2A). As expected, human dataset included larger 

fraction of species-specific genes. The TS gene profiles were then mapped onto PPI 

networks. For each TS-network, we evaluated the total number of edges or nodes 

and percentage of transcripts ubiquitously expressed (Figure 5.2B,C). Ortholog 

coverage in TS PPI networks indicates the % of Drosophila proteins with at least one 

known ortholog in human (red) and vice-versa (blue) (Figure 5.2C). Compared to 

overall ortholog coverage in Figure 5.2A, the human TS PPI networks lost a fraction 

of human-specific genes. The particular loss of human-specific proteins in TS PPI 

networks indicates that their interactions a poorly characterized. 

 

Human networks were larger and incorporated higher fraction of non-

ubiquitous proteins. This likely illustrates that human networks incorporate a large 

fraction of specialized and evolutionarily more recent proteins. When comparing 

networks from the same species, the human brain network was among the networks 

with the lowest % of ubiquitous proteins but the highest coverage of orthologs (black 

dot in Figure 5.2C). This observation could indicate that, regardless of human 

specialization, many brain functions are rooted in evolutionarily ancestral genes. On 

the other hand, human BioInt libraries included on average twice as many BioInt units 

as fly counterparts (Figure 2D). Human brain BioInt library was one of the smallest (in 

terms of number of BioInt units), while the fly brain library was one of the largest.  

 

We also evaluated the distribution of ubiquitous genes along the BioInt units in 

the two species' libraries. The difference between human and fly libraries is similar to 

that of networks (Figure 5.2C,D). However, the median % of ubiquitous proteins in 

BioInt units is greater than in overall TS PPI networks, indicating that ubiquitous 

proteins collaborate in several units. 
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Figure 5.2 Comparison of the properties of tissue-specific (TS) protein-interaction (PPI) network 
and TS-BioInt libraries in fly and human models 
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(A) Venn diagrams summarizing the % of fly and human genes in the complete transcriptomes associated 
to orthologs in the counterpart species. (B, C) Boxplots comparing total number of nodes and edges (B), 
% of ubiquitous proteins and orthologs in the TS-networks reconstructed in human and fly models (C). 
Black dot indicates the specific value of brain network. Ortholog coverage indicates the % of Drosophila 
proteins with at least one known ortholog in human (red) and vice-versa (blue). (D) Number of BioInt units 
identified in each TS-network and median percentage of ubiquitous proteins by unit by TS-network. (E) 
Coverage of Gene Ontology (Go-BP) along the construction of BioInt libraries. (e1) Bar plots comparing 
the % of transcripts annotated with at least one Go-BP. (e2-e4) Venn diagrams representing the 
intersection of Go-BP annotated (e2), significantly enriched (e3) or defined as BioInt units (e4 - assemblies 
of PPIs enriched in Go-BP including up to 200 proteins) in all the TS-networks combined. (e5) Indicates the 
total intersection of BioInt units identified in human and fly brain networks. The colored boxes in d2-d5 
indicate the % of common Go-BPs based on human or fly total set sizes. (e6) Density plot representing 
the number of ancestors associated with each Go-BP annotated in the TS-networks (corresponding to the 
sets in e2). 

 

Next, we determined the coverage of Gene Ontology-Biological Process (GO-

BP) annotations at each step of the workflow to reconstruct BioInt units (Figure 

5.2E). We found that more than 84% of transcripts in the two species are functionally 

annotated (Figure 5.2e1). However, the total number of functional terms in the 

human network was twice the one found in fly (Figure 5.2e2). Despite the large 

difference in absolute numbers, we found that more than 85% of fly annotations were 

common to human. As we proceeded through the steps of the BioInt workflow - TS 

PPI reconstruction (Figure 5.2e1), GO-BP annotation (Figure 5.2e2), GO-BP 

enrichment (Figure 5.2e3) and selection of BioInt units including up to 200 proteins 

(Figure 5.2e4)-, we lost more than 98% of common annotations. Although it was a 

notable loss, in Chapter 2 we reached to the conclusion that functional enrichment 

and size filtering was key to remove false positive and/or unspecific annotations. 

Finally, the brain libraries employed in this chapter included a similar number of BioInt 

units but a low % of common units between human and fly (Figure 5.2e5).  

 

The consistent difference in total size between human and fly GO-BP and 

BioInt unit sets could either reflect an inequity in functional annotation efforts or 

indicate that human tissues have a richer catalog of functional options. As an 

estimation of functional annotation depth, we took advantage of the ontology 

hierarchy and compared the number of ancestors of the terms annotated in fly and 

human sets (Figure 5.2d2 step). The density plot in Figure 5.2e6 shows that the 

annotations of the two species displayed almost the same distribution in number of 

ancestors. Thus, the smaller number of annotations in Drosophila datasets is not only 

due to shallow ontology. 
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Tis observation, together with the smaller size of Drosophila PPI network and 

its lower annotation in GO-BPs reinforce the fact that the fly is a less complex 

organism than the human. 

 

5.3.2  MND candidates display broad tissue expression patterns 
but accumulate in tissue-specific BioInt units 

 
From the research presented in Chapter 2 we concluded that DGs expressed 

in the same tissues can trigger distinct alterations depending on the TS-network 

contexts. To corroborate this observation, we re-evaluated the properties of the TS-

BioInt libraries in both species. Figure 5.3A shows that - with the exception of a few 

tissues such as bone marrow in human, and ovary or testis in Drosophila - BioInt 

libraries displayed similar size distribution profiles. In accordance with the total 

number of MND candidate genes identified in S2B and DGE analyses (Figure 5.3B), 

Drosophila BioInt units accumulated a larger % of DEgs, overall. On the other hand, 

the fraction of MND candidates per BioInt unit displayed a similar distribution profile 

across all the tissues, including brain (Figure 5.3B). Thus, as previously observed in 

Chapter 2, the accumulation (total fraction) of MND protein candidates in BioInt units 

might not be the only determinant feature to induce the TS pathological phenotypes. 

 

We next evaluated the distribution of MND gene/protein candidates in the TS 

PPI networks and their significant enrichment (hyper-geometric test, p-value >0.05) in 

BioInt units across the TS BioInt libraries (top and bottom pie charts in Figure 5.3C, 

respectively). TS RNA-seq datasets covered 27 and 11 non-sexual tissues in human 

and fly species, respectively. Fly datasets lacked from samples of heart, muscle and 

tracheal-respiratory tissues. However, the large difference in total tissue libraries is 

mostly due to the fact that Drosophila is organized in simpler organ systems. For 

instance, human dataset included 5 tissue samples involved in immune functions fly 

organism does not have to compare against. 
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Figure 5.3 Comparison of the properties of tissue-specific (TS) BioInt libraries in fly and human 
models 
(A) Density plots summarizing the number of proteins incorporated in each BioInt unit in each TS-library. 
(B) Density plot summarizing the % of MND candidates incorporated in each BioInt unit across the TS-
libraries. Colored lines in A and B point to six illustrative tissues. (C) Pie charts summarizing the tissue 
expression patterns of transcripts (top half) and BioInt units enriched in MND candidates (bottom half) in 
human and fly universe (left and right panels, respectively). Color indicates the % of tissues in which the 
transcript or BioInt unit was identified -excluding sexual tissues. 
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Compared to the overall transcriptome profiles, we found that, with exception 

of human DEgs, the MND candidates have markedly broad expression, with most 

candidates being expressed in more than 80% of the tissues (first and second rows in 

Figure 5.3C). ALS-DEgs were identified in MNs from spinal cord samples. Therefore, 

the 9.4% of DEgs not mapped in brain transcriptome likely encode proteins restricted 

to MN interactome. By contrast, fly MND-DEgs were identified in head samples, 

which represents a much broader universe of transcripts. On the other hand, the 

distribution of BioInt units enriched in candidate genes drew a notably distinct pattern 

(third and fourth rows in Figure 5.3C). As expected from the results in Chapter 2, 

the overall distribution of BioInt units is more tissue specific than that of individual 

transcripts in the tissue transcriptomes. However, with exception of human S2B, it is 

noteworthy that the BioInt units enriched in MND candidates are notably more tissue 

specific. While the tissue distribution of BioInt units enriched in Drosophila candidates 

was very similar, the profiles of human BioInt units were very distinct. The BioInt units 

enriched in ALS-DEgs are the most tissue specific while the BioInt units enriched in 

human S2B candidates, the most transversal. 

 

5.3.3  The simplification of BioInt units into functional groups 
reveals common functional hallmarks associated to human 
and fly MND candidates 

 

Once we identified the BioInt units enriched in MND protein candidates (hyper-

geometric test, p-value <0.05), we next sought to integrate the functional hallmarks 

derived from the two models. The overlap analysis of individual MND protein 

candidates showed relatively small intersection between the four sets. With the 

exception of the fly DEgs, each set included more than 82% of unique candidates 

(Figure 5.4A). As expected, due to the low intersection between human and fly brain 

libraries, there were no common BioInt units enriched in candidates from the two 

models. Likewise, the intersection of BioInt units enriched in DEg and S2B candidates 

was also very low (Figure 5.4B). To overcome the initial lack of commonalities, we 

took advantage of the semantic information of Gene Ontology hierarchies to group 

BioInt units in broader functional concepts. In this way, the functional groups can 
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incorporate BioInt units from fly, human or both organisms. The functional groups 

were generated from BioInt units enriched in at least one candidate set. Overlap 

analysis in Figure 5.4C indicates the number of functional groups including BioInt 

units enriched in varying candidate sets.  

 

We next evaluated the hallmarks of the 38 functional groups incorporating 

BioInt units significantly enriched in at least one candidate set (hyper-geometric test, 

p-value >0.05, Figure 5.4C,D). We found six functional groups including BioInt units 

enriched in all the four MND candidate gene sets, which will be explored in more 

detail in next section. Aside the commonalities between the four sets, it was 

noteworthy that mitochondrion homeostasis or mRNA processing-related processes 

were significantly enriched in both human and fly S2B candidates. Furthermore, 

human S2B candidates were also enriched in functions related to DNA metabolism, 

nuclear import, or microtubule-cytoskeleton processes. These trends suggest that 

the S2B method captures functions involved in transversal activities of the cell.  
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Figure 5.4 Overlap analyses of proteins involved in functions enriched in MND candidates from 
the four sets simultaneously 
(A) Intersection analysis of all proteins (A) and MND candidates (B) involved in the respective BioInt units. 
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5.3.4  The integration of common MND functional groups in the 
core-PPI network reveals potential players linking fly and 

human MND-pathomechanisms 

 

The six functional groups enriched in MND candidates from all four sets were 

related to neurotransmitter transport, vesicle organization, membrane fusion, glia cell 

differentiation, cell development and oxidative stress regulation. As introduced in 

Chapter 1 and as discussed throughout this thesis, these functions have an evident 

relevance for the physiology of MNs. The intersection analysis in Figure 5.5 indicated 

that functional groups could be simplified in three major processes, hereafter referred 

to as, vesicle transport, glia differentiation and oxidative stress. 
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Figure 5.5 Core-PPI network linking human and Drosophila orthologs identified as MND 
candidates 
Node shape indicates the specie while color indicates the type of MND candidate. Dashed edges represent 
ortholog relation between fly and human genes. Edge width indicates the number of interactions each 
ortholog presents in each function. Node size of proteins in functional groups indicates the number of 
interactions within the same function subnetwork.   
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The six functional groups included a total of 700 and 537 human and fly 

proteins, respectively. The goal of this Chapter was however, to emphasize the core 

molecular interactions linking the cross-species MND phenotypes. To this end, 

Figure 5.6 only depicts the protein interactions between ortholog pairs 

simultaneously identified as MND candidates in the two species, especially in 

oxidative stress, vesicle transport and glia differentiation-related processes. Non-

candidate proteins were excluded from the network and the interaction of core 

orthologs with the proteins in the functional groups was simplified into single edges. 

Likewise the interactions between proteins associated to the same function were 

represented by the size of the node. DEgs were much more abundant than S2B 

candidates, especially in fly functions. Thus, DEgs with less than 5 interactions - 12 in 

the case of fly vesicle transport and glia differentiation - were excluded from the 

figure. The full list of 94 BioInt units enriched in human and fly MND gene candidates 

is available in Supplementary Data 5.2. 
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Figure 5.6 Core-PPI network linking human and Drosophila orthologs identified as MND 
candidates 
Node shape indicates the specie while color indicates the type of MND candidate. Dashed edges represent 
ortholog relation between fly and human genes. Edge width indicates the number of interactions each 
ortholog presents in each function. Node size of proteins in functional groups indicates the number of 
interactions within the same function subnetwork.  

 

 

Vesicle transport, glia differentiation and oxidative stress are molecularly 

interrelated. Glia encompasses several types of non-neuronal cells including 

astrocytes, microglia, oligodendrocytes, among others. Both glia and neuron cells 

exhibit a coordinated morphogenesis and exert a close communication. Astrocytes 

and microglia are closely implicated in neuron synapse development and 

maintenance (reviewed by (Stogsdill and Eroglu, 2017). Microglia, the resident 

macrophage of the CNS, reacts to lesions of the nervous system by releasing pro-

inflammatory factors. The overstimulation of innate immune response and 

inflammatory cascades directly affects to the neurons' physiology aggravating 

ongoing pathological states. In particular, activated microglia can induce 

overproduction of ROS and increase oxidative stress in neighboring neurons. Vesicle 

trafficking is pivotal for axonogenesis, synaptogenesis and synapse activity. Cell-to-

cell communication and chemotaxis are modulated by dynamic intracellular signaling 

pathways that require rapid protein expression mechanisms at the synapse. Thus, 

axonal transport of the elements necessary for protein translation - including RNA and 

ribosomal macromolecules among others - becomes essential for normal neuronal 

physiology (Rangaraju et al., 2017). On this basis, it is not surprising to find that our 

results highlight proteins interrelating glia differentiation, synapse vesicle traffic and 

oxidative stress. Of note, we found that "glia differentiation" group covers many 

proteins involved in axonogenesis and synaptic traffic. 

 

Most important, we found that several of the ortholog pairs in the core 

networks are involved in heterogeneous intracellular signaling pathways. 14-3-3 

proteins (YWHA) form complexes that bind to a multitude of proteins providing a 

dynamic PPI hub to regulate signaling processes related to neurogenesis, and 

synaptogenesis (reviewed in (Cornell and Toyo-oka, 2017)). Human SFN (14-3-3 

sigma) also collaborates in cell cycle and DNA damage response pathways. In 

Drosophila, 14-3-3 proteins have also been implicated in neuronal differentiation. 
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Non-receptor tyrosine-protein kinases Src-FYN/LYN and Abl-ABL1 ortholog pairs 

regulate varying intracellular signaling pathways. FYN Src kinase mainly targets 

membrane receptors for regulating synaptic traffic (Nygaard et al., 2014). Among 

ABL1 substrates we find signaling adaptors, other kinases, cytoskeletal proteins, TFs 

and chromatin remodelers implicated in cell cycle and DNA damage control (Wang, 

2014). On the other hand, the orthologs of the catalytic subunit of Casein kinase II 

(CSNK2A2-CkIIalpha) were also identified as fly and human MND candidates. CKII 

phosphorylates a large number of substrates implicated in varied processes involved 

in synaptic plasticity and proteostasis including chaperones, cell cycle regulators and 

apoptosis mediators (Castello et al., 2017).  

 

It was remarkable that the fly orthologs just mentioned are distinctively involved 

in synaptic vesicle trafficking, while, at the same time, their human orthologs were 

additionally implicated in cellular stress and DNA damage responses. 

 

Among the Drosophila MND candidates (top half, Figure 5.6) we found several 

Syntaxin proteins (Syx5, Syx1A, Syx13 and Syx16). Syntaxins are SNAP-receptors 

(SNARE proteins) implicated in secretory pathways including neurotransmitter (NT) 

release (reviewed in (Quiñones-Frías and Littleton, 2021)). Likewise, the network 

highlighted several SNAP proteins implicated in ER-Golgi and endosome-phagosome 

vesicular transport (snap25, alphaSnap, gammaSnap2) and the vesicle-fusing 

ATPase 2 (Nsf2). Additional proteins decisive for axonal guidance and synapse 

formation in Drosophila were Nrg and Fas2 cell-adhesion proteins and Ten-m 

transmembrane protein that interacts with cytoskeleton-binding proteins as Nwk 

(Mosca, 2015). Nwk, in turn, is a cytoskeleton-remodeling protein that localizes in 

presynaptic zones to regulate endosomal cargoes. 

 

In parallel, the counterpart human orthologs revealed direct interactions with 

human MND candidates involved in cellular stress control. HSPA1A-Hsc70-4 

orthologs are heat shock protein members of Hsp70 protein family. Hsp70 are 

cytosolic molecular chaperones essential for cell homeostasis including protein 

folding and degradation. Fly Hsc70 has been involved in clathrin-mediated 

endocytosis while human HSAP1A has been implicated in UPR response to oxidative 
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stress (Shah et al., 2017) and chromatin remodeling to DNA damage (Shukla and 

Tekwani, 2020) by interacting with several MAP kinases and histone deacetylases - 

identified as MND candidates too -. In turn, MAPK8 targets multiple TFs also 

identified as MND candidates namely, JUN stress-related signaling pathway and 

RELA/NK-kappa B pathways. NF-KB is a transcription regulator essential for many 

inflammatory factors. At the same time, platelet-derived growth factor receptor A 

(PDGFRA) is essential in nervous system development and adult neuronal 

maintenance or neuroprotection (Funa and Sasahara, 2014).  

 

Pathways related to MAPK8, JUN or NFKB-RELA have been already pointed 

as potential therapeutic targets for neuroprotection in Parkinson's Disease (Rai et al., 

2021). However, the neuroinflammation observed across all neurodegenerative 

diseases - including MNDs - can be induced by varying factors and cell cross-talks 

(reviewed in (Z. Liu et al., 2020)). Likewise, as observed for NFKB activation, the 

release of pro-inflammatory factors can have both beneficial or detrimental roles 

depending on the disease stage (Ouali Alami et al., 2018). Beyond treatments to 

decrease neuroinflammation, inhibitors of Src kinase and drug targets of CKII have 

are being investigated in Alzheimer's disease and other psychiatric disorders 

(Castello et al., 2017; Nygaard et al., 2014). The gene expression deregulation of 

YWHA proteins is being investigated for indirect prognosis of pre-symptomatic 

psychosis too (Demars et al., 2020).  
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5.4  Discussion 
 

The goal of the work presented in the last chapter was to integrate the 

knowledge extracted throughout the thesis to generate a transversal hypothesis 

underlying MND in fly and human species. We found that a large fraction of human 

and fly DEgs and S2B candidates exhibited broad tissue expression. Likewise, the 

mapping of DEgs and S2B candidates in BioInt units across the TS libraries did not 

show a distinctive accumulation in brain tissue. However, within brain BioInt library, it 

was noteworthy that the BioInt units enriched in MND candidates were actually more 

tissue specific. These trends were previously observed in Chapter 2 substantiating 

that, disregarding the high number of housekeeping proteins, disease-associated 

proteins are particularly involved in TS biological processes.  

 

Nonetheless, the tissue distribution of BioInt units enriched in fly and human 

MND candidates was notably distinct. The difference between BioInt units enriched in 

DEgs (DEg-BioInt units) is justified by the use of different types of samples in human 

and Drosophila (MN from spinal cord samples and fly head lysates, respectively). On 

the other hand, the disparity between S2B-BioInt units probably indicates differences 

in the topology of the species' networks. Considering that the goal of the S2B 

method is to identify network bottlenecks, the wide tissue distribution of human S2B-

BioInt units reinforces that S2B candidates are involved in cellular processes essential 

to any tissue. However, fly S2B candidates were prioritized using orthologs from ALS 

and SMA human DGs. Thus, the unexpected tissue specificity of fly S2B-BioInt units 

suggests the topology of disease modules generated from ortholog DGs is artificially 

distorted. On the other hand, the GO-BP coverage analysis across human and 

Drosophila datasets indicated that the small GO-BP overlap between TS PPI 

networks is mainly due to biological differences inherent to the species. We showed 

that the combination of BioInt units and semantic similarity information improves the 

integration of cross-specie knowledge.  

 

The core-network reconstructed from the combination of BioInt units enriched 

in human and fly MND protein candidates revealed a close molecular relation between 

signaling pathways and vesicle trafficking to coordinate glia-MN 
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communication and synaptogenesis. It was patent the protein candidates in MND 

core-network are involved in heterogeneous processes and so may have a wide 

impact in cell homeostasis. Accordingly, most of these proteins were effectively 

prioritized by the S2B method. Therefore, they likely constitute molecular bottlenecks 

with potential application in the design of therapeutic treatments. 

 

The implication of glia deregulation in MND has gained much prominence 

during recent years (T. Kim et al., 2020; Komine and Yamanaka, 2015). Our findings 

also suggested that MN and glial communication is at the center of the pathological 

hallmarks identified in human and fly species. On the other hand, the imbalanced 

number of candidates involved in oxidative stress and synaptic vesicle traffic between 

human and Drosophila may reflect the physiological differences between the two 

species. Human MNs are long living cells and so are more susceptible to accumulate 

oxidative stress that fly MNs. Thus, it is plausible that human MNs require tighter 

control of ROS species and DNA damage that fly MNs. The observation that the 

same orthologs pairs are involved in varying functions could manifest that these 

human MND candidates have acquired additional roles in human.  
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5.5  Supplementary Data 
 

R code to reproduce BioInt-U method is available in: 

https://github.com/GamaPintoLab/BioInt-U 

 

Supplementary data files are available in: 

https://github.com/GamaPintoLab/MLG_PhDThesis_SupData 

 

Supplementary Data S5.1 Drosophila TS BioInt units 

Supplementary Data S4.2 Selected Human and Drosophila BioInt units  
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The ultimate objective of this PhD research was to identify common molecular 

mechanisms of MNDs. The inherent complexity of biological systems hinders the 

identification of critical molecular players of multigenic diseases. Nonetheless, the 

characterization of biomolecular networks can expose underlying mechanisms of 

biological organization and therefore, provide information on the triggering events of 

pathological phenotypes.  

 

Today, we can access a large volume of cell- and tissue-specific 

transcriptomic studies in public repositories. These in turn have been employed to 

systematically reconstruct tissue-specific interactomes from tissue-naive PPI datasets 

(Kotlyar et al., 2016). The BioInt-U method made use of these tissue-specific 

networks to identify biologically interacting units, i.e., groups of interacting proteins 

associated to the same enriched GO-BP terms. We next conducted a systematic 

comparison of the topological properties of proteins and functional units across 33 

normal human tissues. In most cases, the topological characterization of tissue-

specific networks has been restricted to disease-specific contexts (Karimizadeh et 

al., 2019; Marín et al., 2019; Sircar and Parekh, 2015; Will and Helms, 2016). To 

our best knowledge though, few studies have aimed to characterize the normal 

coordination of biological processes along the distinct tissue-specific interactomes. 

From our perspective, the dissection of the normal tissue functionomes is pivotal to 

distinguish cell type specific functions from those essential to any type of cell. This 

knowledge in turn, is critical to understand the mechanisms by which mutations in 

housekeeping genes can trigger tissue-specific disease manifestations.  

 

The analysis of human TS BioInt libraries supported an in-depth comparison 

between HK and TE functions. We corroborated that HK units are related to core 

functions such as organelle trafficking, RNA or protein metabolism and are mostly 

made up of UB proteins with significantly larger degree and betweenness coefficients 

than proteins exclusively involved in TE functions. Likewise, our results suggested that 

nonUB proteins are critical players in the coordination of both HK and TE functions. 

The systematic mapping of DGs in the BioInt units indicated that more than 55% of 

total DGs - including MNDs - were ubiquitously expressed and overall, displayed a 

broader expression profile than nonDG proteins. We found that the UB proteins 
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encoded by DGs displayed different interaction profiles depending on the TS network. 

In particular, proteins associated to TS diseases displayed higher degree and 

betweenness coefficient in the corresponding tissue networks. This observation 

indicates that the HK proteins might acquire more central roles in the affected tissues. 

In parallel, the analysis evinced that nonUB proteins associated to TS diseases are 

critical for the functional coordination and so could similarly alter core functions. 

 

We are aware that BioInt-U only recapitulates functional coordination at the 

protein level and so it lacks from crucial information such as gene regulation 

interactions (Sonawane et al., 2017). Nonetheless, we opted for a strategy that only 

requires GO-BP ontology, transcriptomic and interactomic data to be easily adapted 

to less well characterized organisms, or to take advantage of RNA-seq and 

interactomic datasets from novel tissue samples or single cell studies. We find several 

methods with similar goals to ours (Basha et al., 2020; Greene et al., 2015; Jung et 

al., 2021; Vella et al., 2018). However the data requirements and algorithms 

necessary to apply these strategies are much more complex that the one we 

propose. As recently pointed out by Zolotareva and Kleine, from the ~100 functional 

enrichment methods published since 2002, only 34% were currently accessible 

(Zolotareva and Kleine, 2019). Thus, it is not surprising to find that, despite their 

drawbacks and limitations, ORA (hyper-geometric test) and GSEA (pre-ranked gene 

set enrichment) are the most extensively used functional enrichment strategies.  

 

Among the most similar methods to ours, we may highlight MTGO (Vella et al., 

2018), a clustering method that integrates GO and interactomic information to 

reconstruct functional complexes. However, due to the computational complexity of 

network clustering, the computing time of MTGO often required impracticable 

amounts of time. For example, for a network consisting of 2,400 nodes annotated 

with >13,000 GO terms and ~20,000 interactions, MTGO required > 24 hours, while 

BioInt-U performed the same analysis in ~30 minutes. Overall, we have shown the 

benefits of using the BioInt-U method to explore the topological properties of tissue-

specific interactomes. Additionally, we demonstrated its potential to functionally 

characterize complex candidate profiles, as the ones retrieved from RNA-seq 
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datasets of Drosophila MND knockdown models, human ALS, psoriasis, and 

pulmonary fibrosis. 

 

Cellular activity is the result of the coordination of closely interrelated molecular 

events. Therefore, the alteration of distinct molecular elements can affect the 

interconnected pathways and trigger similar pathophenotypes. MNDs are a prime 

example of the molecular complexity of disease conditions. MNDs encompass a 

spectrum of MN degenerative conditions associated to numerous genetic alterations. 

ALS and SMA are the most frequent subtypes of MND and, according to DisGeNET 

on May 2021, they have been associated to the mutation of >180 and >30 genes, 

respectively (Piñero et al., 2020). It is therefore surprising that even though ALS and 

SMA only share 4.2%-25% of disease-linked genes, the two conditions present 

overlapping clinical hallmarks. Despite the phenotypic variability across patients 

(Lopate et al., 2010), it is evident that the identification of transversal molecular 

events is critical to understand the emergence of pathological conditions and thus 

develop effective clinical solutions. To that end, the characterization of biological 

networks and the prioritization of key players in molecular communication is a 

meaningful first step. On this basis, we made use of network biology principles to 

investigate the cross-sectional characteristics of MND subtypes. The results retrieved 

from the analysis of BioInt libraries pointed that the DGs actually display higher 

centrality in TS networks. This observation reinforces the S2B method usefulness to 

prioritize proteins involved in pathological conditions. We showed the benefits of the 

S2B method in identifying bottleneck candidates specific to connect ALS and SMA 

disease modules.  

 

The functional characterization of MND candidates corroborated that both the 

proteins specifically connecting ALS and SMA disease modules and the proteins 

deregulated in the human and fly disease models are frequently involved in RNA 

metabolism, vesicle trafficking, intracellular signaling and stress. The RNA 

transcription, cytoskeleton organization, vesicle traffic and signaling pathways are 

noticeably interrelated and converge onto the coordination of axonal transport in 

neurons. Axonal transport is essential for the local protein translation at the synapse 

and so for the communication of any neuron. However, MNs establish extraordinarily 
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long axonal projections and are therefore more sensitive to disturbances in the axonal 

transport. Additionally, the deregulation of axonal transport also affects to the 

retrograde transport pathways that coordinate autophagy and protein recycling. 

Thus, the deregulation of axonal transport is expected to deregulate organelle, protein 

and RNA clearance and so trigger cellular stress (Houghton et al., 2022). In turn, the 

cellular stress has a direct impact on DNA damage (Konopka and Atkin, 2018), RNA 

metabolism and protein homeostasis, perpetuating the MN deregulation. On the other 

way around, additional sources of stress as mitochondria deregulation (Lau et al., 

2018) or astrocytes overstimulation (Kia et al., 2018) could similarly impact DNA/RNA 

homeostasis and signaling pathways involved in intracellular trafficking (Ding et al., 

2022). From a physiological perspective, it is patent that these functions are 

dependent one on each other thus, the distinct alterations can converge into axonal 

transport deficiency, synapse malfunction and MN degeneration (Ragagnin et al., 

2019). In the same line, our results brought additional evidences that the MND 

candidates can exert varying functions depending on their interactomic context and 

serve as multifunctional coordinators. 

 

The work presented in the thesis has several limitations, many of which are 

derived from the lack of experimental data. The transcript and protein interactome 

greatly vary depending on the subcellular compartment and cellular state. However, 

the protein interactome is a static representation of all the possible physical 

interactions between proteins. This limitation is compounded by the fact that most 

popular high-throughput technologies to characterize PPIs are unable to capture 

weak interactions. The transient or weak interactions are equally essential as the most 

stable interactions thus, it is predicted that we still lack a large fraction of functional 

PPI data (Ghadie and Xia, 2022). At the same time, the cellular transcriptome is 

highly dynamic and RNA-seq methods can only capture the singular state of the 

sample investigated. Therefore, the information represented in the two types of omic 

data is largely incomplete and so, the predictions extracted from static network-

based analysis do not necessarily resemble to all patients' conditions. Single-cell and 

spatial transcriptomics and proteomics are already being employed to target specific 

research questions (Adil et al., 2021; Lundberg and Borner, 2019). Equivalent efforts 

are being made to characterize protein transient interactions through proximity-



Intregrated discussion 

M.L. García-Vaquero, 2022 197 

labeling methods as APEX or BioID (Bosch et al., 2021). These methods bring 

additional challenges, namely in the design of protocols for normalization, reduction of 

data dimensionality, and integration in multi-omic models. Regardless, the systematic 

use of these technologies in a high-throughput fashion will certainly bring 

groundbreaking advances in network medicine approaches. 

 

The prioritization of disease-targeted functions was addressed using the hyper-

geometric test to identify BioInt units significantly accumulating DGs. The decision 

relied in the assumption that genes related to disease conditions will most often be 

found in functions essential for cell homeostasis (Barabási et al., 2011). Thus, the 

analysis did not address the effect of the discrete mutations on functional 

coordination. Traditionally, most network studies have considered gene mutations as 

node removal. However, many MND-causing mutations can increase protein 

interaction strength and/or promote new interactions with additional proteins. For 

instance, nearly 200 different mutations in the SOD1 gene have been associated to 

diverse ALS phenotypes (Bernard et al., 2020). The analysis of protein interaction 

rewiring would require in-depth experimental characterization of the interactomic 

changes derived from each specific mutation. Once more data is available, modeling 

the rewiring of BioInt units could reveal additional mechanistic insights to explain 

tissue-specific vulnerabilities.  

 

The use of animal models such as mouse, zebra fish or Drosophila is essential 

for biomedical research in neurodegeneration. However, the conclusions outlined 

from animal models do not always translate into humans (Ferreira et al., 2020). The 

most obvious reason is that the species present divergent evolutionary patterns. In 

other words, the cellular and tissular differences between animal species mostly arise 

from the distinctive arrangement of molecular interactions (Fan et al., 2019; Shou et 

al., 2011). Thus, even if several species share a large fraction of functional orthologs, 

these can trigger very distinct responses. This is likely the reason why the BioInt units 

enriched in human and Drosophila S2B candidates revealed distinct tissue 

distribution. This result urges further investigation of the topological differences 

between human and fly orthologs.  
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The observations drawn from this work emphasized that biological processes 

are not isolated outcomes but rather a continuum of molecular events. The work 

presented in this thesis has generated 264 and 108 S2B candidates and, 470 and 

1098 candidate genes with altered expression in human and fly models, respectively. 

Overall, these candidates were involved in interconnected functions and were 

recurrently associated to central biological processes including RNA metabolism and 

vesicle trafficking regulation. The disruption of any central pathway is expected to 

have deleterious impact on cell survival and as we also observed, regulators of DNA 

and oxidative stress were concomitantly present among the most central MND 

candidates. In the same line, as previously observed in MND-causal genes, MND 

candidates displayed broad tissue expression patterns. This observation revives the 

debate on how mutation of housekeeping proteins primarily affects MN physiology. 

The functional and interactomic characterization of these candidates across 33 

human tissues revealed they frequently present additional interactions in neuronal 

context. Thus, future studies on the tissue-specific interactions of MND candidates 

could elucidate the mechanisms underlying the tissue-specificity of MND phenotypes.  

 

Biomedical research must provide short candidate lists for designing early 

diagnosis and therapeutic options. In that sense, the characterization of the tissue-

specific roles of the candidates is valuable information for pharmaceutical research. 

Broadly expressed protein candidates can be investigated as potential early 

biomarkers to be traceable in "liquid-biopsies". On the other hand, tissue-specific 

membrane receptors could be suitable candidates for drug targeting. 

Notwithstanding, the construction of MND core-network required a very restrictive 

filtering based on previous notions on the disease. Thus, the core-network is 

knowledge-biased and emphasizes many observations form previous studies. In 

order to extract new knowledge regarding the pathology, it would be advantageous 

to further explore those candidates excluded from the core-network. 

In any case, the MND core-network illustrated multiple molecular links that 

explain the hallmarks found in MNDs and demonstrated the benefits of using BioInt-U 

and S2B methods in MND research. Additionally, they were useful to delineate 

common events in the pathophenotypes in human and Drosophila. The present study 

proposes a conceptual model regarding how distinct DGs can converge onto 
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common functional modules and provides a first outline to continue investigating 

complex mechanisms of MND in PPI networks. Likewise, many other diseases have 

complex etiology and so the methods and insights here presented could also be 

profitable in other research areas. 
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